
Aspect Oriented Knowledge-

Driven Evolution of Software

Product Lines With

Hierarchically-Expressed

Variability Information

Preserved in Code
Software Knowledge Comprehension and Reuse

Author: Jakub Perdek

Motivation: Studying the SPL

evolution and variability

 Data should be used further to detect defects
and provide quality assurance between
selected variants

General handling of the variability is

still not fully covered/supported

by variability management

Less rigorous evaluations

of variability management

-knowledge modeling,

-applying principles of variability modeling

-simulating feature interactions

…to handle variability

various models and data representations are required for this purpose

M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou.

Variability in software systems—a

systematic literature review. IEEE Transactions on

Software Engineering, 40(3):282–306, 2014.

L. Chen, M. Ali Babar, and N. Ali. Variability management in software

 product lines: A systematic review. pages 81–90, 01 2009.

Can our software product line

be capable to support a high number of

given requirements?

L. Chen, M. Ali Babar, and N. Ali. Variability management in software

 product lines: A systematic review. pages 81–90, 01 2009.

Creating and managing catalogs of

“correctly” annotated scripts

from possible “solution space” as the reaction

on the previous slide

Modeling variability of software products as part of

software product families under different settings
- possibility to evaluate supporting methods and tune them

- possibility to observe problems with automatic management of configuration expressions

Adaptation of evolutionary

algorithms for SPL

Example of

Given solution

 Feature analysis already created – domain already analyzed

 Suitable for next implementation and improvements

Console game – can play using command line

Text interface

Mandatory parts in the game
Prints info

 at the beginnning

Only random number for rows and columns

Our focus

 - focus on variable features
+ maybe other potential improvements from observed domain

clever
From the same

author in another

 his scatch

Chosing one feature

From set can be

Implemented

in aspect oriented way

Types of variations

INSTANCE OF

SEVERAL

INSTANCES

OPTIONAL

VARIATION

SET OF

INSTANCES OUT

OF SEVERAL

ALTERNATIVES

0 or 1 instance

1 instance from

n instances

k instances from

n instances

Felix Bachmann and Len Bass. 2001. Managing Variability

in Software Architectures. (2001), 7.

Selected

Unselected

How target models vary, based on

„Adapters“ of

variability modeling

FODA, DSL

Prescribed by variability model:

 -what they may have

 -constraints governing selections

Architecture,

requirement models...

1 to 1
mapping

DESCRIBED WITH VARIANT

VARIABILITY OPERATIONS

To handle:

 -positive variability

 -negative variability

DEFINE CONCERNS to variability

 rather than target models

With AND, OR NOT operators

Order of used actions

Set of

Define name for

Denoted

by

Enables the pointcut

 expression to be build

Text to identify

set of model

elements
Name, wildcard

Meta-model

Concepts

Rashid, A., Royer, J., & Rummler, A. (Eds.). (2011). Aspect-Oriented, Model-Driven Software Product Lines: The
AMPLE Way. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139003629

Hierarchic nature of

configuration expressions
 {

 “AND“: {

 “Statistics”: true,

 “Challenge”: false,

 “AND”: {

 “Computer”: true,

 “Row”: “RandomRow”,

 “Column”: “RandomColumn”

 }

 }

 }

Configuration related

to computer as player

Configuration

of the first later

Focus during their creation can be on:

 - hierarchy levels

 - feature groups

 - certain hierarchies

Product derivation

PROBLEM SPACE → SOLUTION SPACE

Product derivation
PROBLEM SPACE → SOLUTION SPACE

Derivation rules

{}

{“difficulty”: “beginner”}

{“playerNames”: “true”}

{“statistics”: “true”}

{“challenge”: “true”}

{“computer”: “true”}

{“computer”: “true”,

 “strategy”: “true”}

Application in

TypeScript

NO ASPECTS

 IN PRODUCTS

Commonality

 vs.

Variability

Puzzle app.

Desing app.
vs.

Feature model

TypeScript product families

 In one application (without backend if necessary)

 Accessible from everywhere (from the browser)

 High UX possible (known elements, reactive forms, own routing,…)

 Possibility to easily evolve SPL

 Possibility to easily evolve product derivation (aspects are not dependent here)

 Reusing proven solutions (resizing canvas (board) during play, rendering algorithms,..)

 Customization of graphic libraries for each specific case

 Managing small variability changes across many types of products and requirements

ASPECTS FOR SPL

FEATURE MANAGEMENT

Restrictions of using aspects

in TypeScript

MATURITYINVASIVENESS

BRIEFNESS

Ricardo Sá Loureiro Ferreira da Silva. 2019. Aspect-

Oriented Programming for Javascript using the Lara

Language. Dissertation thesis. Universidade do Porto,

Porto.

How well aspects are separated

from the rest of the code

How easy, how exactly,

and without

complications is possible

to use a given tool

Wenhao Huang, Chengwan He, and Zheng Li. 2015.

A Comparison of Implementations for Aspect-Oriented

JavaScript:. Zhengzhou, China.

https://doi.org/10.2991/csic-15.2015.9

All abilities and possibilities of

the whole functionality

provided by a given library

Komponent / Nástroj AspectScript AOJS AspectJS

Invasiveness - + -

Briefness ++ + ++

Maturity ++ - -

The comparison of AOP tools

 (Huang et al. 2015)

https://doi.org/10.2991/csic-15.2015.9

SPL Process
 1. Separating aspects from business logic

 2. Adding business logic and annotating variable parts

 3. Deriving requested products from SPL with NO ASPECTS

//${}|[path]|number_block
-proposed annotation to reduce code duplication

STEP 1: Separation of “aspects”

 from code Initial method to apply

aspect for given feature

Service

reference which

enables to work

with inner

attributes

FEATURES

1. SEPARATION OF

FEATURE MANAGEMENT

Loads values from

configuration file

2. LOADING VARIABLES WHICH REPRESENT

 FEATURES FROM CONFIGURATION FILE

3. CONNECTS FEATURE MANAGEMENT WITH THE

BUSINESS LOGIN ONLY IN ONE PLACE

Aspect example – to-aop library

1. CONFIGURATION FILE

2. ASPECT

 DEFINITION

3. NATIVE SERVICE AND TEMPLATE

TEMPLATE

SERVICE

REMOVING ONLY ONE DEPENDENCY ON ASPECTS FROM CONSTRUCTOR

STEP 2: Creating and

annotating functionality

Example: using expressions inside template

Example: Making gallery variable
Example: Gallery should be variable (condition: natively is accessed by routing)

1. Annotate entire class for future exclusion

2. Annotate gallery imports

for future exclusion

3. Annotate mock data, only those which belongs to the gallery

STEP 3: Product derivation
-starting derivator

𝑺𝑺𝑪 =
𝑪𝒄

𝑪𝒄 +|𝑪𝒗|
 =

3

3 + 6
 = 0,3333

Evaluating variability and
commonality

𝐒𝑽𝑪 =
𝑪𝒗

𝑪𝒗 +|𝑪𝒄|
 =

6

6 + 3
 = 0,6666

SSC = 1 - SVC

Tao Zhang, Lei Deng, Jian Wu, Qiaoming Zhou, and Chunyan Ma. 2008.

Some Metrics for Accessing Quality of Product Line Architecture.

In 2008 International Conference on Computer Science

and Software Engineering. IEEE, Wuhan, China, 500–503.

https://doi.org/10.1109/CSSE.2008.500

For components

our adaptation to make assumptions on partial components

Measuring Reuse Rate

𝑹𝑩𝑹 =
Σk Cost Ck

Σj Cost C

𝑪𝑹𝑹 =
Σi Ex|Mi|

|M|

1 if component is included in given member i otherwise 0 (interior)

Number of all members of SPL

(If component is interior then Ex|Mi| = 1 otherwise 0)

CRR for common components will be 100%

- in all derivations (architectures)

Component reuse rate

Reuse benefit rate Quality of all components in SPL

Quality of given product line member k

The higher RBR, the more reusable SPL is (the more members has)

The higher CRR of the component,

 the more important for SPL is

 (for reuse)

Measuring variability

𝑺𝑪𝑪 = 𝟏 −
𝑰𝑽𝑷

|𝑽𝑷|

𝑾𝑪𝑪 =
𝑪𝑽𝑷

|𝑽𝑷|

Number of variability points

Independent variability points

(no dependence relation with others

 – no value of any variability point affects another one)

Number of variability points

DEPENDANCE RELATIONS

Value of one variability

 point affects another

STRONG COUPLED

 VARIABILITY POINTS

Tao Zhang, Lei Deng, Jian Wu, Qiaoming Zhou, and Chunyan Ma. 2008.

Some Metrics for Accessing Quality of Product Line Architecture.

In 2008 International Conference on Computer Science

and Software Engineering. IEEE, Wuhan, China, 500–503.

https://doi.org/10.1109/CSSE.2008.500

STRONG COUPLING

Strong coupling coefficient

Weak coupling coefficient

Weak coupling variability points

(2 or more variability points controlling guard condition

of some variability point(s), components,…)
WEAK COUPLING

Where The Cost of all components in SPL = Σj Cost C = 8378,25

Visualization – Puzzle to play - original data

Results of:

1. Graph merging

2. Hierarchical

 clustering

Matrix-based

hierarchical

clustering

 HOU, Jingyu, Yanchun ZHANG a Jinli CAO, 2003. Web Page
Clustering: A Hyperlink-Based Similarity and Matrix-Based
Hierarchical Algorithms. V: Xiaofang ZHOU, Maria E.
ORLOWSKA a Yanchun ZHANG, ed. Web Technologies and
Applications [online]. Berlin, Heidelberg: Springer Berlin
Heidelberg, Lecture Notes in Computer Science, s. 201–212
[cit. 3.12.2022]. ISBN 978-3-540-02354-8. Dostupné na:
doi:10.1007/3-540-36901-5_22

Based on ingoing and outgoing connections/links

Initialization based on

ingoing and outgoing links

Evaluating model similarity

Hierarchical matrix-based clustering

Energy-bond algorithm

M. T. Özsu, P. Valduriez, Principles

of Distributed Database Systems,

Springer International Publishing,

Cham, 2020.

Energy-bond algorithm

M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,

Springer International Publishing, Cham, 2020.

BUDGET?

As unit test

For 0-3-1:

1. MAXIMIZATION

Diagonal Point D selection
2. MAXIMIZATION

D

J. Hou, Y. Zhang, J. Cao, Web page clustering: A hyperlink-based similarity and matrixbased hierarchical

algorithms, in: Web Technologies and Applications, volume 2642, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2003, pp. 201–212.

Matrix-based graph matching based

on node similarity

ZAGER, Laura A. a George C. VERGHESE, 2008. Graph

similarity scoring and matching. Applied Mathematics

Letters [online]. 2008, roč. 21, č. 1, s. 86–94. ISSN

08939659. Dostupné na: doi:10.1016/j.aml.2007.01.006

BLONDEL, Vincent D.,

Anahí GAJARDO,

Maureen HEYMANS,

Pierre SENELLART a Paul

VAN DOOREN, 2004. A

Measure of Similarity

between Graph Vertices:

Applications to Synonym

Extraction and Web

Searching. SIAM Review

[online]. 2004, roč. 46,

č. 4, s. 647–666. ISSN

0036-1445, 1095-7200.

Dostupné na:

doi:10.1137/S003614450

2415960

Tested

convergence

A

B
According to authentic papers

Matrix-based graph matching

based on

node-edge

similarity

ZAGER, Laura A. a George

C. VERGHESE, 2008.

Graph similarity scoring

and matching. Applied

Mathematics Letters

[online]. 2008, roč. 21, č.

1, s. 86–94. ISSN

08939659. Dostupné na:

doi:10.1016/j.aml.2007.0

1.006

Tested

convergence

A B

According to

authentic papers

Integration of matrix-based methods

Model similarity

Structural

information

Semantic

information

CREATING MULTI-CONTENT AND

 MULTI-PURPOSE FRACTAL DATASET

MULTI-CONTENT MULTI-PURPOSE
-aesthetic evaluation

-comparing the same models on

 different data formats

-SPL evolution through variability points evaluation

 – if they should be included or merged

-associating products with their generators/software parts

-generate the similar fractals using GANS

-JSON data from variability points

-raster screenshots/images

-vector SVG structure information

-table from the variability information itself

-data from recursion

RECURSION IN SPL
The same code parts are repeatedly reused – with different values

HOW IT AFFECTS VARIABILITY MODELING?

Given samples

of one type

Many types
Different approaches how to generate

The Need for framework

 Repeating the same code fragments

 – addinional for cyckle with different range in each iteration

 Combining many code parts

 Excluding optional code parts from some derivations

 variables

 function parameters

 permutation of variables

 Recursion depth is the most important dependency

 precalculating values to log them together

extension for based on previous work, but focused mainly on variability

Logging

Variability configuration

Evaluating

customized dataset
 Manual annotations – based on own aesthetics

 Used third party model

 -comparing different fractal representations/formats:

 Vector graphics – whole structure is written as text .SVG

 Raster graphics

 Information from variability points

inserts knowledge from structure of

program generator itself into data

-improve their accuracy

EASY TO EXECUTE AND

ANALYZE FRACTAL SCRIPT

IN MANY PROGRAMMING

LANGUAGES js2py for Python

Already 378 fractals generated from one file

-based on variability points permutations

and recursion

we bring:

assymetry, chaos, standalone lines

creating non-fractal shape

Can actual results from model

be used as label values?

Evaluated model data

For evaluation

– learning with teacher needs annotated data

Yes if borders of images are filled to the same size

No, if we take original images

– how far fractal can be extended

Maybe yes, but evaluation is also focused mainly on:

colors, golden cut, perspective,

view of the spectator/camera
OWN MODEL IS REQUIRED

-restrict it on shapes only/mainly

-better if deformations were detected and evaluated accordingly

Can serve as restricted „reference“

for further evaluation

Why fractals?

 Multiple format representations (vector, raster, text)

 All images can be converted to SVG, but not all are suitable as shapes – bigger,
better more points – image quality

 We can use them as already created “products”

 No other dependencies - easy to execute code and get values from the
execution

 Code that is executed repeatedly

 Variability management on lower levels (code level) – components are not
suitable

 Variability reaches a “high degree” – almost everything is variability

 No reuse? – NO in recursion there is high reuse, also across all types of derivations

 Many samples can be generated – also merging existing ones

 Thousands – already hundreds of quality ones from one type

 Not all are aesthetic or interesting

Are they necessary? – YES

Method

based on

annotations

and aspects
– recursive

extension

Only one small script is enough

 for 378 samples, but generating fractals

 in for cycles still produces

 a few same shapes

-translation is not productive

still compilable

29. 8. 2024

Creating tree

from these

points
//~{}

29. 8. 2024

29. 8. 2024

Creating the best

representations
... according to the given requirements for model

construction and evaluation of aesthetics ...

Raster

screenshots

Graph data – nodes and

 connections

One instance
Aggregation

of instances

Semi-structured data –

 variable dependencies
recursion depth as reusability of the components:

Step wise logistic regression
Without images, on structured data – dependencies on recursion depth as separate columns

Test ACC: 0.3421 GOOD

multinom(perceivedAesthetics ~ ., family=multinomial,

 data = variablePointDataTrain[usedColnames]) %>% stepAIC(trace = FALSE, direction="both")

print(mean(predictedValues == observedValues))

Evaluating accuracy:

Restricted to the maximal number of 110 columns

for this small evaluated dataset … NOT ENOUGH

GNN – accuracy and loss

Test ACC: 0.7133

Model: "gnn_model"

 Layer (type) Output Shape Param #

===

 preprocess (Sequential) (38376, 32) 1396

 graph_conv1 (GraphConvLayer multiple 5888

)

 graph_conv2 (GraphConvLayer multiple 5888

)

 postprocess (Sequential) (38376, 32) 2368

 logits (Dense) multiple 330

===

Total params: 15,870

Trainable params: 15,028

Non-trainable params: 842

Without images, on graph data

Formatted data according domain knowledge

Finding the best model for
aesthetics assignment

Used model
Accuracy

one user

Accuracy AI

LeNet model

LeNet (input size 28x28) 0,3158 0,8487

LeNet (input size 600x600) 0,3421 0,8618

LeNet multimodel for image with coordinates (input size 600x600) 0,2697 0,7961

Multinomial logistic regression based on coordinates 0,3618 0,8092

Stepwise logistic regression based on coordinates (backward) 0,3421 0,7894

Stepwise logistic regression based on coordinates (forward) 0,4539 0,7960

Stepwise logistic regression based on coordinates (both) 0,4539 0,7961

Graph neural network + coordinates 0,7133 0,6999

Results @Annotation.classVP()

class BB {

 variable1 = -4;

 ...

Structural information Semantic information

The hierarchically-expressed representation of

variation points effectively drives the

development processes by forcing its use to

build modular and reusable code

 fragments and enabling to automatically derive

resulting products according to their

concisely expressed configuration which is

preserved in code with the possibility to

model them dynamically, collect them into

 a dataset, select them, and iteratively

customize them in the software product

line evolution process according to

structural and semantic knowledge.

Resulting capabilities
 To study managed software product line evolution in its automated form

 with the possibility to integrate it with available evolution algorithms

 Applied principles of variability modeling, knowledge modeling, and feature interactions (from data of
resulting products)

 use machine learning/deep learning marginally by applying a wide range of features

 fast and cheap way to observe different possibilities

 To study managed software product lines in large

 Possibility to analyze restricted use of annotations (our approach) applied in variation points and
available actions to preserve modularity, native development (exchangeable with decorators in
TypeScript), and comprehensive code

 Multi-content and Multi-Purpose dataset built from knowledge based on similarity in product family
+ capability to compare and design different models

 No existing one which contains various formats accompanied with launchable applications/products exists
(according to our observations on Kaggle or from the internet)

 Identified extensions to expressions inside annotations to fill gaps during product instantiation

Future work

 Implement and compare other mechanisms for variability management such as pure::variants

 Extend the solution to support new variants and evaluate its quality

 Build GAN to generate similar fractals – analyze the impact of the product in SPL evolution

 try to design variation points based on the best ones

What next?

 Automatically evolve fractal products with the help of the extracted knowledge

 Continue manually evolve stateful canvas-based SPL

 Evaluate recreated annotations into TypeScript decorators in comparison with code without

them (modularity, coupling, and possible applications of aspects)

 Provide functionality to automatically insert these decorators into AST of TypeScript code

 Design other advanced models capable to evaluate quality according to the requirements

including GANs and Transformers

 Tune mechanism to generate different semantic and structural views according to instantiated

products

 Another possibility: Model a given knowledge further (in knowledge bases)

Published and presented

articles on conferences

 J. Perdek and V. Vranić. Lightweight Aspect-Oriented Software Product Lines

with Automated Product Derivation. 5th Workshop on Modern Approaches in

Data Engineering and Information System Design, MADEISD 2023, a part of

27th European Conference on Advances in Databases and Information

Systems, ADBIS 2023. Barcelona, Spain, 2023. Accepted (A-).

 J. Perdek and V. Vranić. Matrix Based Approach for Structural and Semantic

Analysis Supporting Software Product Line Evolution. 10th Workshop on

Software Quality Analysis, Monitoring, Improvement, and Applications,

SQAMIA 2023. Bratislava, Slovakia, 2023. Accepted (A-).

MADEISD 2023, SQAMIA 2023

Bibliography
 BEUCHE, Danilo a Mark DALGARNO, 2006. Software Product Line Engineering with Feature Models.

2006, s. 7.

 BOTTERWECK, Goetz, Kwanwoo LEE a Steffen THIEL, 2009. Automating Product Derivation in
Software Product Line Engineering. 2009, s. 6.

 KASTNER, Christian, Sven APEL a Don BATORY, 2007. A Case Study Implementing Features Using
AspectJ. V: 11th International Software Product Line Conference (SPLC 2007): 11th International
Software Product Line Conference (SPLC 2007) [online]. Kyoto, Japan: IEEE, s. 223–232 [cit.
30.9.2021]. ISBN 978-0-7695-2888-5. Dostupné na: doi:10.1109/SPLINE.2007.12

 LADDAD, Ramnivas, 2003. AspectJ in action: practical aspect-oriented programming. Greenwich, CT:
Manning. ISBN 978-1-930110-93-9.

 PELÁNEK, Radek, 2012. Programátorská cvičebnice. 1. vydání. Brno: Computer press. ISBN 978-80-
251-3751-2.

 VRANIC, Valentino a Roman TÁBORSKÝ, 2016. Features as transformations: A generative approach to
software development. Computer Science and Information Systems [online]. 2016, roč. 13, č. 3, s. 759–
778. ISSN 1820-0214, 2406-1018. Dostupné na: doi:10.2298/CSIS160128027V

 YOUNG, Trevor J a B MATH, 1999. Using AspectJ to Build a Software Product Line for Mobile
Devices. 1999, s. 73.

 Mohammad Abu-Matar and Hassan Gomaa. 2011. Variability Modeling for Service
Oriented Product Line Architectures. In 2011 15th International Software Product
Line Conference. IEEE, Munich, Germany, 110–119. https://doi.org/10.1109/
SPLC.2011.26

 Hwi Ahn and Sungwon Kang. 2011. Analysis of Software Product Line Architecture
Representation Mechanisms. In 2011 Ninth International Conference on Software
Engineering Research, Management and Applications. IEEE, Baltimore, MD, USA,
219–226. https://doi.org/10.1109/SERA.2011.22

 S.A. Ajila. 2005. Reusing Base-product Features to develop Product Line
Architecture. In IRI -2005 IEEE International Conference on Information Reuse and
Integration, Conf, 2005. IEEE, Las Vegas, NV, USA, 288–293.
https://doi.org/10.1109/ IRI-05.2005.1506488

 Samuel A Ajila and Patrick J Tierney. 2002. The FOOM Method – Modeling Software
Product Lines in Industrial Settings. (2002), 11.

 Vander Alves, Pedro Matos Jr, and Paulo Borba. 2004. An Incremental Aspect-
Oriented Product Line Method for J2ME Game Development. (2004), 3.

 Vander Alves, Pedro Matos, Leonardo Cole, Alexandre Vasconcelos, Paulo Borba,
and Geber Ramalho. 2007. Extracting and Evolving Code in Product Lines with
Aspect-Oriented Programming. In Transactions on Aspect-Oriented Software
Development IV, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,
Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu
Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe
Y. Vardi, Gerhard Weikum, Awais Rashid, and Mehmet Aksit (Eds.). Vol. 4640.
Springer Berlin Heidelberg, Berlin, Heidelberg, 117–142.
https://doi.org/10.1007/978-3-540-77042-8_5 Series Title: Lecture Notes in
Computer Science.

 Fazal-e Amin, Ahmad Kamil Mahmood, and Alan Oxley. 2010. A Review on Aspect
Oriented Implementation of Software Product Lines Components. Information
Technology Journal 9, 6 (Aug. 2010), 1262–1269. https://doi.org/10.3923/itj.2010.
1262.1269

 Michalis Anastasopoulos and Dirk Muthig. 2004. An Evaluation of Aspect-Oriented
Programming as a Product Line Implementation Technology. In Software Reuse:
Methods, Techniques, and Tools, Jan Bosch and Charles Krueger (Eds.). Vol. 3107.
Springer Berlin Heidelberg, Berlin, Heidelberg, 141–156.
https://doi.org/10.1007/978-3-540-27799-6_12 Series Title: Lecture Notes in
Computer Science

 Sven Apel, Thomas Leich, and Gunter Saake. 2006. Aspectual mixin layers: aspects
and features in concert. In Proceedings of the 28th international conference on
Software engineering. ACM, Shanghai China, 122–131. https://doi.org/10.1145/
1134285.1134304

 U. Aßmann. 2003. Invasive Software Composition. Springer-Verlag, Berlin,
Heidelberg

 M.A. Babar. 2004. Scenarios, Quality Attributes, and Patterns: Capturing and Using
their Synergistic Relationships for Product Line Architectures. In 11th Asia-Pacific
Software Engineering Conference. IEEE, Busan, Korea, 574–578. https:
//doi.org/10.1109/APSEC.2004.91

 Felix Bachmann and Len Bass. 2001. Managing Variability in Software
Architectures. (2001), 7.

 L. Balzerani, D. Di Ruscio, A. Pierantonio, and G. De Angelis. 2005. A product line
architecture for web applications. In Proceedings of the 2005 ACM symposium on
Applied computing - SAC ’05. ACM Press, Santa Fe, New Mexico, 1689.
https://doi.org/10.1145/1066677.1067059

https://doi.org/10.3923/itj.2010.%201262.1269
https://doi.org/10.3923/itj.2010.%201262.1269

 Gérald Barré. 2018. Aspect Oriented Programming in TypeScript.
https://www.meziantou.net/aspect-oriented-programmingin-typescript.htm

 Don Batory, Rich Cardone, and Yannis Smaragdakis. 2000. Object-Oriented
Frameworks and Product Lines. In Software Product Lines, Patrick Donohoe (Ed.).
Springer US, Boston, MA, 227–247. https://doi.org/10.1007/978-1-4615-4339-8_13

 Joachim Bayer, Oliver Flege, and Cristina Gacek. 2000. Creating Product Line
Architectures. In Software Architectures for Product Families, Gerhard Goos, Juris
Hartmanis, Jan van Leeuwen, and Frank van der Linden (Eds.). Vol. 1951. Springer
Berlin Heidelberg, Berlin, Heidelberg, 210–216. https://doi.org/10.1007/978-3-
540-44542-5_23 Series Title: Lecture Notes in Computer Science.

 Ivo Augusto Bertoncello, Marcelo Oliveira Dias, Patrick H. S. Brito, and Cecília M. F.
Rubira. 2008. Explicit exception handling variability in component-based product
line architectures. In Proceedings of the 4th international workshop on Exception
handling - WEH ’08. ACM Press, Atlanta, Georgia, 47–54.
https://doi.org/10.1145/1454268.1454275

 Vinicius Bischoff, Kleinner Farias, Lucian José Gonçales, and Jorge Luis Victória
Barbosa. 2019. Integration of feature models: A systematic mapping study.
Information and Software Technology 105 (Jan. 2019), 209–225.
https://doi.org/10. 1016/j.infsof.2018.08.016

 Lynne Blair and Jianxiong Pang. 2003. Aspect-Oriented Solutions to Feature
Interaction Concerns using AspectJ. (2003), 17.

 Jan Bosch. 2000. Design & Use of Software Architectures—Adopting and Evolving a
Product Line Approach.

https://doi.org/10.1145/1454268.1454275
https://doi.org/10.%201016/j.infsof.2018.08.016

 Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink, and Klaus Pohl.
2002. Variability Issues in Software Product Lines. In Software Product-Family Engineering,
Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Frank van der Linden (Eds.). Vol. 2290.
Springer Berlin Heidelberg, Berlin, Heidelberg, 13–21. https://doi.org/10.1007/3-540-47833-
7_3 Series Title: Lecture Notes in Computer Science

 Jonathan Cardoso. 2021. How To Use Decorators in TypeScript.
https://www.digitalocean.com/community/tutorials/howto-use-decorators-in-typescript

 João M.P. Cardoso, Tiago Carvalho, José G.F. Coutinho, Wayne Luk, Ricardo Nobre, Pedro
Diniz, and Zlatko Petrov. 2012. LARA: an aspect-oriented programming language for
embedded systems. In Proceedings of the 11th annual international conference on Aspect-
oriented Software Development - AOSD ’12. ACM Press, Potsdam, Germany, 179.
https://doi.org/10.1145/2162049.2162071

 Adrian Colyer, Awais Rashid, and Gordon Blair. 2004. On the Separation of Concerns in
Program Families. (2004), 11

 Tung M. Dao and Kyo C. Kang. 2010. Mapping Features to Reusable Components: A Problem
Frames-Based Approach. In Software Product Lines: Going Beyond, David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Jan Bosch, and Jaejoon Lee (Eds.). Vol. 6287.
Springer Berlin Heidelberg, Berlin, Heidelberg, 377–392. https://doi.org/10.1007/978-3-642-
15579-6_26 Series Title: Lecture Notes in Computer Science.

 Ebru Dincel, Nenad Medvidovic, and André van der Hoek. 2002. Measuring Product Line
Architectures. In Software Product-Family Engineering, Gerhard Goos, Juris Hartmanis, Jan
van Leeuwen, and Frank van der Linden (Eds.). Vol. 2290. Springer Berlin Heidelberg, Berlin,
Heidelberg, 346–352. https://doi.org/10.1007/3-540-47833-7_31 Series Title: Lecture Notes
in Computer Science.

 Chethana Kuloor Armin Eberlein. 2002. Requirements Engineering for Software Product Lines.
(2002), 12

https://doi.org/10.1007/3-540-
https://www.digitalocean.com/community/tutorials/howto-use-decorators-in-typescript

 Eun Sook Cho, Min Sun Kim, and Soo Dong Kim. 2001. Component metrics to
measure component quality. In Proceedings Eighth Asia-Pacific Software
Engineering Conference. IEEE Comput. Soc, Macao, China, 419–426.
https://doi.org/10.1109/ APSEC.2001.991509

 Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Monteiro, Uira Kulesza,
Alessandro Garcia, Sergio Soares, Fabiano Ferrari, Safoora Khan, Fernando Castor
Filho, and Francisco Dantas. 2008. Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. (2008), 10.

 Robert E. Filman and Daniel P. Friedman. 2000. Aspect-Oriented Programming is
Quantification and Obliviousness. In Proceedings of the Workshop on Advanced
Separation of Concerns in Object-Oriented Systems, ACM Conference on
ObjectOriented Programming, Systems, Languages, and Applications, OOPSLA
2000. Minneapolis, Minnesota USA. RIACS Technical Report 01.12, 2001.

 Critina Gacek and Michalis Anastasopoules. 2001. Implementing product line
variabilities. In Proceedings of the 2001 symposium on Software reusability putting
software reuse in context - SSR ’01. ACM Press, Toronto, Ontario, Canada, 109–117.
https://doi.org/10.1145/375212.375269

 R.L. Glass and I. Vessey. 1998. Focusing on the application domain: everyone
agrees it’s vital, but who’s doing anything about it?. In Proceedings of the Thirty-
First Hawaii International Conference on System Sciences, Vol. 3. IEEE Comput.
Soc, Kohala Coast, HI, USA, 187–196. https://doi.org/10.1109/HICSS.1998.656141

 Sebastian Gunther and Thorsten Berger. 2008. Service-Oriented Product Lines:
Towards a Development Process and Feature Management Model for Web Services.
(2008), 6.

 Stefan Hanenberg, Christian Oberschulte, and Rainer Unland. 2003. Refactoring of
Aspect-Oriented Software. (2003), 18.

https://doi.org/10.1145/375212.375269

 Jan Hannemann and Gregor Kiczales. 2002. Design Pattern Implementation in
Java and AspectJ. (Nov. 2002), 13.

 Wenhao Huang, Chengwan He, and Zheng Li. 2015. A Comparison of
Implementations for Aspect-Oriented JavaScript:. Zhengzhou, China.
https://doi.org/10.2991/csic-15.2015.9

 Renien John Joseph. 2015. Single Page Application and Canvas Drawing.
International journal of Web & Semantic Technology 6, 1 (Jan. 2015), 29–37.
https://doi.org/10.5121/ijwest.2015.6103

 Critina Gacek and Michalis Anastasopoules. 2001. Implementing product line
variabilities. In Proceedings of the 2001 symposium on Software reusability
putting software reuse in context - SSR ’01. ACM Press, Toronto, Ontario,
Canada, 109–117. https://doi.org/10.1145/375212.375269

 K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report.
Carnegie-Mellon University Software Engineering Institute

 Christian Kastner, Sven Apel, and Don Batory. 2007. A Case Study
Implementing Features Using AspectJ. In 11th International Software Product
Line Conference (SPLC 2007). IEEE, Kyoto, Japan, 223–232.
https://doi.org/10.1109/SPLINE.2007.12

 Elizabeth A Kendall. 1999. Role Model Designs and Implementations with
Aspect-oriented Programming. (1999), 17

https://doi.org/10.5121/ijwest.2015.6103
https://doi.org/10.1145/375212.375269
https://doi.org/10.1109/SPLINE.2007.12

 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. 2001. An Overview of AspectJ. In ECOOP 2001 — Object-

Oriented Programming, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and

Jørgen Lindskov Knudsen (Eds.). Vol. 2072. Springer Berlin Heidelberg, Berlin,

Heidelberg, 327–354. https://doi.org/10. 1007/3-540-45337-7_18 Series Title:

Lecture Notes in Computer Science.

 Jan Kohut and Valentino Vranic. 2010. Guidelines for using aspects in product

lines. In 2010 IEEE 8th International Symposium on Applied Machine

Intelligence and Informatics (SAMI). IEEE, Herlany, 183–188.

https://doi.org/10.1109/SAMI.2010. 5423741

Evaluating aesthetic perception

on third party model - bias

28 X 28 px

600 X 600 px

What model sees:

https://github.com/vatsal-rooprai/Image-Aesthetic-Evaluation

The hierarchically-expressed representation of

variation points effectively drives the development

processes by forcing its use to build modular and

reusable code fragments and enabling to

automatically derive resulting products according to

their concisely expressed configuration which is

preserved in code with the possibility to model them

dynamically, collect them into a dataset, select

them, and iteratively customize them in the

software product line evolution process according to

structural and semantic knowledge

Results after SPL

creation

- THE RESULT SHOULD REMAIN A FRACTAL

- SYMMETRY IS THE BEST

- ASYMMETRY OFTEN DOES NOT LOOK SO GOOD

- MAKING MORE INSTANCES OFTEN RESULTS

 IN CHAOS IN A FEW PLACES IN THE IMAGE

Some results are enhanced,

if another recursion functionality depends on it

doubled W-curves

- LOGGING CAN PROVIDE „FACTORIALS“ OF DATA

- GENERATED DATA ARE ONLY IN

 FORM OF KEY-VALUE PAIRS

EASY TO EXECUTE AND

ANALYZE FRACTAL SCRIPT

IN MANY PROGRAMMING

LANGUAGES js2py for Python

Already 378 fractals generated from one file

we bring:

 asymmetry, chaos, standalone lines

 creating non-fractal shape

Results

proper representation software

proper representation of software knowledge in place of variation points

Annotated by our annotationsessential information (knowledge) about software put inside

annotation or found in their place (a form of tracing from lit.)

effective modularization and reuse

Restricted use of our annotations (their actions from lit.)

to force organize variable code in a native and modular way

 in parallel with the help of the aspects

automatically derived

resulting products

The derivation process is automated

subsequent extraction

The mechanism is adapted to extract given

information from code fragment (also dynamic one)

with optional aggregation

Also knowledge from heterogeneous applications

can be analyzed with the rest of the software family

supports decision-making about the evolution

knowledge and associated information

Knowledge can be connected and used in various models that are

designed for automated decision-making about SPL evolution, its evaluation

differences between

 variants

Knowledge mainly captures

differences between members

of this

The

drives the

of software parts in the form of

while the

of the software product

line mainly based on

Studying the SPL

evolution and variability

General handling of the variability is

still not fully covered/supported

by variability management

Less rigorous evaluations

of variability management

-knowledge modeling,

-applying principles of variability modeling

-simulating feature interactions

…to handle variability

various models and data representations are required for this purpose

M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou.

Variability in software systems—a

systematic literature review. IEEE Transactions on

Software Engineering, 40(3):282–306, 2014.

Other possibilities

Data should be used further to detect

defects and provide quality assurance

between selected variants

L. Chen, M. Ali Babar, and N. Ali. Variability management in software

 product lines: A systematic review. pages 81–90, 01 2009.

Evaluation of our Angular SPL

𝑺𝑺𝑪 =
𝑪𝒄

𝑪𝒄 +|𝑪𝒗|
 =

29

29 +40
 = 0,4209

𝐒𝑽𝑪 =
𝑪𝒗

𝑪𝒗 +|𝑪𝒄|
 =

40

40 +29
 = 0,57971 The more variability, the…

BETTER USER MENTAL MODEL SUPPORT

The more commonality, the…

BETTER REUSE OF ASSETS ACROSS

PRODUCT FAMILY MEMBERS (PRODUCTS)

𝑹𝑩𝑹 =
Σk Cost Ck

Σj Cost C

Additive results for variation points are shown in the next table

Value of given component

C is measured by LOC

(the lines of code) TypeScript code (fc=3),

template code (ft=2)

styles (fs=0.25)

Agenda

 Software product lines – what are they used for?

 Motivation – research on variability in parallel with software quality, and extraction of
knowledge from related products

 Resolving commonality and variability in TypeScript stateful applications

 Evaluating the effectiveness of software product line establishment

 presented on prepared stateful canvas-based TypeScript SPA product line

 Supporting product line evolution by extraction and comprehension of knowledge from
related software products (presented on the real use-case)

 presented on prepared fractal recursion-based product line

 Various data representations of software product features and capabilities

 Evaluation of models for aesthetics assignment and quality of resulting products

 Results and future work, Bibliography

TargetModelImport

LanguageInstanceModelVariabilityModelImport ActionDescriptor

EvaluationAspect

TransformationAspect TraceLinkAspectConfigurationImport

ActionTransformation

1

1

1 *

*

*

1

Rashid, A., Royer, J., & Rummler, A. (Eds.). (2011). Aspect-Oriented, Model-Driven
Software Product Lines: The AMPLE Way. Cambridge: Cambridge University
Press. doi:10.1017/CBO9781139003629

Generates trace links

Syntactic information

about action

 Transforms target

models based on configurations

One form of

evaluation

Information about the

type of variability model

Additional information for action

associated with transformation

 of target models

-action name,

-number of parameters

(parser, something based

on model elements,…)

Model-transformation codeVML LANGUAGES

- VML4RE

- VML4Arch

Meta-model

for VML

language

instance

descriptions

Meta-model

for variability

management

Rashid, A., Royer, J., & Rummler, A. (Eds.). (2011). Aspect-Oriented, Model-Driven
Software Product Lines: The AMPLE Way. Cambridge: Cambridge University
Press. doi:10.1017/CBO9781139003629

VML language – the process

Rashid, A., Royer, J., & Rummler, A. (Eds.). (2011). Aspect-Oriented, Model-Driven
Software Product Lines: The AMPLE Way. Cambridge: Cambridge University
Press. doi:10.1017/CBO9781139003629

xTend – model-to-text

xPand – model-to-model

TRANSFORMATION

LANGUAGES

Domain analysis

Creation of features

 Created only mandatory features in a way that not provides:

 product derivation

 Voluntary features in configurable way

 Hardcoded functionality – needs refactoring

 Option to choose from options (in case of difficulty in game)

 Only console environment – (we will not remake)

 No code reuse – repetition on many places

 Still not extensive game –

(but real application for given domain)

 Lack of encapsulation and object oriented features

 Needs divide static method to appropriate classes

 Needs manage access from parent object

 Business concerns are not fully separated

Problems of given solution

Design with aspects as

voluntary functionality

 Aspect can be removed from execution – variable functionality

 Aspect can intercepts points in execution and helps to derive product

 Good to extend functionality in various ways

 Add voluntary features

 Choosing specific strategy from strategy options – from mandatory ones too

 Enhance necessary functionality on existing classes (includes classes of additional

features)

AND or OR JSON TREE

 (variable1 OR (Variable2 AND variable3)) AND variable4

1. If given variables in config are both true, then

AND above is true

2. If given variable variable1 is false in config then

OR is true, otherwise remaining branches should be true

3. If given variable variable4 is true in config and

whole OR is true, then parent AND is true

4. If whole is true, then we can copy annotated method

Applied annotations types

//@{} //#{} //%{}
For whole

class/aspect/interface
For class/aspect

method only

For import

statement only

//%{}

//#{}

//@{}

Copying of whole file with class Copying of given method Copying of given import

Evaluation

Where The Cost of all components in SPL = Σj Cost C = 8378,25

Application on

fractals

Many possible derivations of

fractals

Fractal domain
Fractal

derivation

Aesthetic

feeling

Product derivation Product validation

EXTENSIVE SOLUTION SPACE

How to catch all feature variability?
When domain is focused on our aesthetic perception

In there suitable feature diagram?

A need for best product

derivator

A need to generate all possible derivations.

Can they include only mathematical model?

Variable size has value 200,

As the same as values of variables:

lineLength = 10

thickness = 1

Not all are suitable,

but for completeness....

Dependency

of recursion depth
More so than other variables inside recursion

WHY?

What next with fractals?

 Analyze already harvested content to observe if catched variability can be used to improve (in

automatic way):

 Accuracy of third party systems (evaluating aesthetics)

 Variability points – decomposing them, adding new ones, checking their suitability

 Build own model for fractals only – RESEARCH THE EVOLUTION OF SPL

 Build GAN to generate similar fractals – analyze impact of product in SPL evolution

 try to design variability points based on the best ones

Related to evaluation/statistics? –mainly to variability points in general
-contingency/pivot tables

-association tables

-agreement studies Topic in statistics course

Difficulty configuration Prepare configuration (with

difficulty settings) before creating

player’s specific instance

1. PREPARATION

2. POINTCUTS

The same pointcuts

“Hook“ functions

(with other names)

3. APPLYING CONFIGURATION VALUES

Calling the method with the same name but other arguments,

to apply other aspect managing player’s instance (showed previously)

Software design according

feature diagram
 Given functionality can spread trough whole system – in not modular systems

 This functionality can be voluntary – marked in feature diagram this way

 For using aspects codes should be created according some principles

 How to derive product with / without given feature if feature has many

classes and its implementation can include aspects too

NEED TO KNOW CERTAIN DOMAIN

Adding support for computer

or user opponent

Like “hooks”

Computer as opponent

Player as opponent

Changes to use both – aspect use

…

…

Mapping of pointcuts

…

…

Statistics configuration

Statistics observation are gathered

if value of variable from config file is True

MOVES

HITS

MISS = MOVES - HITS

Statistics objects are stored in hash-map

Variable encapsulation

problem

To call function to manage computer guess,

which should not be publicly visible

In player instance chooser aspect:

The same problem

Object oriented redesign

 Hardcoded parts should be changed to support configurability

 Different lengths of board

 Support for adding player

 Concerns should be separated

 Setup of player should be part of player class

 Setup of computer should be part of computer class

 Static methods should be replaced by objects

Schema after refactoring

Quality checker

structure

Evaluating

customized dataset
 Manual annotations – based on own aesthetics

 Used third party model

 -comparing different fractal representations/formats:

 Vector graphics – whole structure is written as text .SVG

 Raster graphics

 Information from variation points

inserts knowledge from structure of

program generator itself into data

-improve their accuracy

EASY TO EXECUTE AND

ANALYZE FRACTAL SCRIPT

IN MANY PROGRAMMING

LANGUAGES js2py for Python

Already 378 fractals generated from one file

-based on permutations of variation points

 and recursion

we bring:

 asymmetry, chaos, standalone lines

 creating non-fractal shape

Meta-model

Concepts

Rashid, A., Royer, J., & Rummler, A. (Eds.). (2011). Aspect-Oriented, Model-Driven Software Product Lines: The
AMPLE Way. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139003629

	Snímka 1: Aspect Oriented Knowledge-Driven Evolution of Software Product Lines With Hierarchically-Expressed Variability Information Preserved in Code
	Snímka 2: Motivation: Studying the SPL evolution and variability
	Snímka 3: Can our software product line be capable to support a high number of given requirements?
	Snímka 4: Example of Given solution
	Snímka 5: Mandatory parts in the game
	Snímka 6: Our focus - focus on variable features
	Snímka 7: Types of variations
	Snímka 8: Meta-model Concepts
	Snímka 9: Hierarchic nature of configuration expressions
	Snímka 10: Product derivation
	Snímka 11: Product derivation
	Snímka 12: Derivation rules
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16: TypeScript product families
	Snímka 17: Restrictions of using aspects in TypeScript
	Snímka 18: SPL Process
	Snímka 19: STEP 1: Separation of “aspects” from code
	Snímka 20
	Snímka 21: Aspect example – to-aop library
	Snímka 22
	Snímka 23
	Snímka 24
	Snímka 25: Example: using expressions inside template
	Snímka 26: Example: Making gallery variable
	Snímka 27
	Snímka 28: bold italic cap S bold italic cap S bold italic cap C equals absolute value bold italic cap C bold italic c , end absolute value over denominator , absolute value bold italic cap C bold italic c , end absolute value plus vertical bar bold itali
	Snímka 29: Measuring Reuse Rate
	Snímka 30: Measuring variability
	Snímka 31
	Snímka 32: Visualization – Puzzle to play - original data
	Snímka 33: Results of: 1. Graph merging 2. Hierarchical clustering
	Snímka 34: Matrix-based hierarchical clustering
	Snímka 35: Initialization based on ingoing and outgoing links
	Snímka 36: Evaluating model similarity
	Snímka 37: Hierarchical matrix-based clustering
	Snímka 38
	Snímka 39: Energy-bond algorithm
	Snímka 40: Diagonal Point D selection
	Snímka 41: Matrix-based graph matching based on node similarity
	Snímka 42: Tested convergence
	Snímka 43: Matrix-based graph matching based on node-edge similarity
	Snímka 44: Tested convergence
	Snímka 45: Integration of matrix-based methods
	Snímka 46
	Snímka 47: Model similarity
	Snímka 48: CREATING MULTI-CONTENT AND MULTI-PURPOSE FRACTAL DATASET
	Snímka 49: Given samples of one type
	Snímka 50
	Snímka 51: Many types
	Snímka 52: The Need for framework
	Snímka 53: Evaluating customized dataset
	Snímka 54: Can actual results from model be used as label values?
	Snímka 55
	Snímka 56: Why fractals?
	Snímka 57
	Snímka 58: Method based on annotations and aspects – recursive extension
	Snímka 59
	Snímka 60
	Snímka 61
	Snímka 62
	Snímka 63: Creating the best representations
	Snímka 64: Raster screenshots
	Snímka 65: Graph data – nodes and connections
	Snímka 66
	Snímka 67: Semi-structured data – variable dependencies
	Snímka 68: Step wise logistic regression
	Snímka 69: GNN – accuracy and loss
	Snímka 70
	Snímka 71
	Snímka 72: Resulting capabilities
	Snímka 73: Future work
	Snímka 74: Published and presented articles on conferences
	Snímka 75: Bibliography
	Snímka 76
	Snímka 77
	Snímka 78
	Snímka 79
	Snímka 80
	Snímka 81
	Snímka 82
	Snímka 83: Evaluating aesthetic perception on third party model - bias
	Snímka 84
	Snímka 85
	Snímka 86: Results after SPL creation
	Snímka 87
	Snímka 88: Results
	Snímka 89: Studying the SPL evolution and variability
	Snímka 90: Other possibilities
	Snímka 91: Evaluation of our Angular SPL
	Snímka 92: Agenda
	Snímka 93: Meta-model for VML language instance descriptions
	Snímka 94: Meta-model for variability management
	Snímka 95: VML language – the process
	Snímka 96: Domain analysis Creation of features
	Snímka 97
	Snímka 98: Design with aspects as voluntary functionality
	Snímka 99: AND or OR JSON TREE
	Snímka 100: Applied annotations types
	Snímka 101: Evaluation
	Snímka 102
	Snímka 103: Application on fractals
	Snímka 104: Many possible derivations of fractals
	Snímka 105: How to catch all feature variability?
	Snímka 106
	Snímka 107: What next with fractals?
	Snímka 108: Difficulty configuration
	Snímka 109
	Snímka 110
	Snímka 111
	Snímka 112: Software design according feature diagram
	Snímka 113
	Snímka 114: Adding support for computer or user opponent
	Snímka 115: Mapping of pointcuts
	Snímka 116: Statistics configuration
	Snímka 117
	Snímka 118: Variable encapsulation problem
	Snímka 119
	Snímka 120
	Snímka 121
	Snímka 122
	Snímka 123: Object oriented redesign
	Snímka 124: Schema after refactoring
	Snímka 125: Quality checker structure
	Snímka 126: Evaluating customized dataset
	Snímka 127: Meta-model Concepts

