
Supporting Reuse

With Aspects
CDI, Software Product Lines and

Apect-Oriented Change Realization

Software Component
Software component is unit of composition with

explicitly determined (approval) and required

interfaces and dependencies. Similarly, it can be

independently deployed and is subject of

composition performed by third parties.

Component has no externally observable state.

Source: SZYPERSKI, Clemens, 2002. Component Software : Beyond

Object-Oriented Programming. ISBN 0-201-745572-0.

GOOD TO ACHIEVE REUSE?

Composition Of Components

SOA
Services are composed

based on

on Loose coupling

Aspects
Aspects are composed with

the rest of the code

Microservices
Using orchestrator like

Docker Swarm or Kubernetes
Micro-frontend

Implementational level

Architectural level

Architectural level

Domain Knowledge
Timeless compression of mental models of

end users and other stakeholders

Mental models whose patterns are tacidly

driven by commonality and variation
Source: James O. Coplien and Gertrud Bjrnvig. 2010.

Lean Architecture: for Agile Software Development. Wiley Publishing.

Introducing Software

Product Lines

Evolutionary Revolutionary

Existing Set of

Products

New Set of

Products

Source: https://poetisania.com/val/aosd/index.html

Source:
Anastasopoulos,
M. and Muthig,
D. (2004) ‘An
Evaluation of
Aspect-Oriented
Programming as
a Product Line
Implementation
Technology’, in J.
Bosch and C.
Krueger
(eds) Software
Reuse: Methods,
Techniques, and
Tools. Berlin,
Heidelberg:
Springer Berlin
Heidelberg, pp.
141–156.

Use of ECaesarJ
Why?

Insufficient

mechanisms in OOP

for modularizing the

features

PROVIDES LARGE-SCALE SELECTION AND

COMPOSITION MECHANISMS

VIRTUAL CLASSES PROPAGATING THE

MIXIN COMPOSITION

Only for individual

objects/classes

Multiple affected

objects/classes

by Features

-inner classes

-late-bound instantiation

-can be refined in subclasses

of enclosing class
-as family members

 – members of instances of

 the enclosing class [family objects/classes]

Composition propagates

 into virtual classes

ALL INHERITED DECLARATIONS

 OF VIRTUAL CLASSES

WITH THE SAME NAME ARE MERGED

 AUTOMATICALLY

Implementation

in ECaesarJ

Taken from: Rashid, A., Royer, J.C., Rummler, A. (eds.):
Aspect-Oriented, Model-Driven Software Product Lines:
The AMPLE Way (09 2011)

feature-oriented

 modularization of

software product lines

Feature
In family class

Domain

objects
In virtual

 classes
cclass

New CaesarJ dat structure

To not confuse this with Java class

 -to use it as extension ofJava

The DCI Architecture:

A New Vision of Object-Oriented

Programming

Source: https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

- Vision to capture the end user cognitive model

Model of roles and interaction between these roles

Objects capture structure, but fail to capture system action

- A way how to combine roles, algorithms, objects, and

associations between them to provide a stronger mapping

between the code and the end-user mental model

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

Not just any composition of Observer pattern

MVC

Source: https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

Not just any composition of Observer pattern

MVC

Source: https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

Roles
Model-View-Controller

Perspective

Defines interaction

between the objects

that play them

https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

Not just any composition of Observer pattern

MVC

Source: https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

Model-View-Controller-User

The way how to separate

the representation of information

from user interaction

CAPACITY:

MVC-U

https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

MVC-U Information
Interpretation of data:

Key element in end

user mental model

Data Staff in User Head
-representation of information

-in computers: bits -meaning in user head: interaction between bits

The aim of good program:

capturing the information model

in the data model

Union of cognitive model and data model

Direct manipulation

metaphor:
 the sense that end users are actually

manipulating objects in memory that

reflect the images in their head

Source: https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

Direct Manipulation Metaphor

Source: https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

Model-View-Controller-UserCAPACITY:

Raw

Data
Simple Cognitive Models

Model
Filters the data

The Controller creates Views

and coordinates Views and

Models.

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

Example: half-call in telephony domain

Basic building blocks

Telephone operator: duration,

may shrink number of parties
Supported user illusion with model

Supported user illusion with modelAnother actor: sees data

differently/ different perspective

User has a feel that he is

manipulating with real object

Raw Data Simple Cognitive Models

Model Filters the data

...

Particularly simplistic rule of thumb

nouns verbs
objects methods

Objects are stable
All code in objects thus cannot

represent a change

Agile vision of

evolution and

maintainability

stable

changeable

separed

programming by

difference

programming by

extension

Inheritance

Solved by:

Supports

open-closed

principle

Static type

system
Smalltalk

class as implementation tool

for object as analysis concept

inheritance graphs as design abstraction
-fully represented by base class interface

newly added methods either

didn't appear in the base class

Problem of inheritance hierarchies 25 deep

Extension by

Derivation

Solved by:

Solved by:

- domain classes should be dumb

Data domain entity class

stable data models dynamic behavioural models

Roles
New concept of an action from users heads

Interaction
- mirrors from the user's mind into the code

-behaviors that are about what objects do

- data with their own vocabulary and rules

weave the algorithms through the roles

as algorithms

roles embody generic, abstract algorithmsOBJECT

WHAT

SYSTEM

IS DATA

MODEL
WHAT

SYSTEM

DOES

ALGORITHM

MODEL Dynamic behaviour

Static behaviour –

for thinking

Unifies two models

in users head

Role Model Synthesis

Source: Reenskaug, Trygve; P. Wold; O. A. Lehne

(1996). Working with Objects: The OOram Software

Engineering Method. Manning/Prentice Hall.

Each plays one or more roles

As role

models

Role in one model plays

environment role in another

models

Object-Oriented Role Analysis Modeling

What

System is?

What

System Does?

Domain Knowledge
The Mental Model

of End User

Objects

Domain Analysis Use Case Modeling

Roles

Interaction of Roles

Source: https://poetisania.com/val/as/index.html

All users perspective
Single user perspective

Domain Knowledge
Timeless compression of mental models of

end users and other stakeholders

Mental models whose patterns are tacidly

driven by commonality and variation
Source: James O. Coplien and Gertrud Bjrnvig. 2010.

Lean Architecture: for Agile Software Development. Wiley Publishing.

There has been no established

domain knowledge so far?

RELY ON THE END USER COGNITIVE

MODEL OF THE DOMAIN

Create

Order

Remove

Order

Source: https://poetisania.com/val/as/index.html

There has been no established domain knowledge so far?

RELY ON THE END USER COGNITIVE MODEL OF THE DOMAIN

Create

Order

Remove

Order

Modify

Restock

Plan

LEAN ARCHITECTURE

What System DoesUSE-CASES

What System is

Source: https://poetisania.com/val/as/index.html

Agile Software Development
Avoid producing waste...

Pull, Do not push end users

Producing only what is

neccessary without modyfying

an existing functionality
... like stringing corals on a thread

Making decisions at

responsible moment

Lean Architecture Only as much architecture as is neccessary

USE-CASES

preserved in code

Preserving Aspects in Code

System architecture has to reflect

the end user cognitive model being

able to accommodate emerging

use-cases

Jacobson, I., Ng, P.: Aspect-Oriented Software Development with Use Cases.

Addison Wesley Professional (2004), ISBN 0-321-26888-1.

Use-case modularity problem
Previously unsupported in analytical models and

in implementational environments

Solution to Peer Use Cases:

 Intertype Declaration
-we create use case slice…
 …containing only specifics for this

 use case (Accounting the

` purchase in Figure)

Zdroje z Bc. Pavol Michalco: PRÍPADY POUŽITIA A TÉMY V PRÍSTUPE THEME/DOC

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf

Use case:

No Representation of System

Operations In Code Using OOP

Source: https://www.sitepoint.com/dci-the-evolution-of-the-object-oriented-paradigm/

Source: https://www.sitepoint.com/dci-

the-evolution-of-the-object-oriented-paradigm/

https://www.sitepoint.com/dci-

Source: https://www.sitepoint.com/dci-

the-evolution-of-the-object-oriented-paradigm/

https://www.sitepoint.com/dci-

DCI – Data Context

 Interaction
-invented by Trygve Reenskaug

Source: https://poetisania.com/val/aosd/index.html

Source: https://poetisania.com/val/aosd/index.html

Data

Context

Interaction

- ”What the system is”
-a data and associated local methods

- ”What the system does”
-contextual behavior - only methods which occur in use case

SEPARATION TOWARDS

STABLE SOFTWARE

DCI Class

DCI Context
-expresses only communication between objects

-expresses exclusively

object inner functionality

 (not concerning neighbor objects)

-which values are assigned to particular entities

Source code matches

the runtime

=> Observable from the context

LOCALITY
-each use case in

 separate file

Source: https://poetisania.com/val/aosd/index.html

Source: https://poetisania.com/val/aosd/index.html

Aspect-Oriented

Change Realization

CHANGE AS CROSSCUTTING REQUIREMENS

-initiated by a change request made by stakeholder (user,…)

Change

Change request
-usually focused on changes to be realized

-containing even interrelated requirements

 - has to be split into individual changes, their generalization

 and aggregation according to particular domain

Domain Specific

Changes -returning another SMTP

Server instead of original one

using Cuckoo’s egg pattern

Source: Aspect-Oriented Change Realizations and Their
Interaction Article V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog.
Aspect-Oriented Change Realizations and Their Interaction. e-
Informatica Software Engineering Journal, 3(1):43-58, 2009

Generalization to

Class exchange

change type

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Catalog of Change Types

Source: Aspect-Oriented Change Realizations and
Their Interaction Article V. Vranić, R. Menkyna, M.
Bebjak, and P. Dolog. Aspect-Oriented Change
Realizations and Their Interaction. e-Informatica
Software Engineering Journal, 3(1):43-58, 2009

-to provide developer hints about incorporated changes

MAINTAINING CATALOG OF CHANGES

Domain Specific Change

Generably Applicable Change

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Domain Specific

Changes -returning another SMTP Server

instead of original one using Cuckoo’s

egg pattern

Source: Aspect-Oriented Change Realizations and Their
Interaction Article V. Vranić, R. Menkyna, M. Bebjak, and P.
Dolog. Aspect-Oriented Change Realizations and Their
Interaction. e-Informatica Software Engineering Journal,
3(1):43-58, 2009

Generalization to Class

exchange change type

Domain Specific Change

Generably Applicable Change

Introducing Resource Backup

Class Exchange

Change Type - Cuckoo's Egg

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Applying Changes:

Example
CHANGE

REQUIREMENTS:

Source: https://poetisania.com/val/

1. Identification of Themes

in Change Request

Source: https://poetisania.com/val/

2. Determining Crosscutting

 Theme

Source: https://poetisania.com/val/

3. Observing Corresponding

Specification Change Type in

Catalog

Source: https://poetisania.com/val/

Source: https://poetisania.com/val/

Finding Matching Realization

Change in Catalog

Source: https://poetisania.com/val/

Applying Change Type
Domain Specific Change

Generably Applicable Change

Source: Aspect-Oriented Change Realizations and Their Interaction Article V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog.
Aspect-Oriented Change Realizations and Their Interaction. e-Informatica Software Engineering Journal, 3(1):43-58, 2009

1. Developer chooses

 change request

2. Indentifying domain

 specific changes (D# - D1, D2) (aggregation)

3. Searching and getting Generally applicable

change types according to Domain specific

types to complete it (G# - G1, G2)

4. Introducing

aspects as Generally

applicable change type

5. Introducing

 aspects to complete

Domain specific change

6. Introducing Domain independent

code scheme for each Generally

applicable change

7. Incorporating

adaptation in the

context of Domain

specific change

usually as kind of

refinement
(association)

(realization)
(specialization)

(realization)

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Integration Changes:
One Way Integration: Performing Action After Event

Performed action after event
Such as a post to the newsletter sign-up/sign-out

script and pass it the e-mail address and name of

the newly signed-up or deleted affiliate

such as Notification of incoming events
the integrating application notifies the integrated

application of relevant events

Capturing certain events

Applied Patterns

Boudary Control

Method Substitution

Souirce: Aspect-Oriented Change Realizations and Their
Interaction Article V. Vranić, R. Menkyna, M. Bebjak, and P.
Dolog. Aspect-Oriented Change Realizations and Their
Interaction. e-Informatica Software Engineering Journal,
3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Enumeration Modification

Change

public aspect NewEnumType {

public static EnumValueType

 EnumType.NEWVALUE = new EnumValueType(10, "");

}

Introducing new enumeration value:

Source: Aspect-Oriented Change Realizations and
Their Interaction Article V. Vranić, R. Menkyna, M.
Bebjak, and P. Dolog. Aspect-Oriented Change
Realizations and Their Interaction. e-Informatica
Software Engineering Journal, 3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Changing a Change

Using Aspects

1. Use the primitive pointcut to capture execution of all advices:

adviceexecution()
2. Annotating and accessing the advices:

within()/withincode()

@annotation()

Or handling multiple advices by annotating each with the pointcut:

-separation of crosscutting concerns in the application

 => IMPROVING MODULARITY

 => MAKES FURTHER CHANGES EASIER

Capturing Change Interactions

By Feature Models
- Mutual change dependencies of some change realizations

- Dependencies on underlying system affected by other

change realizations

Possible escalation into a serious

problemsFEATURES
-virtually pluggable

as variable features

FEATURE MODELING

-including variability among changes

-variable features are used as the systems extensions

Only on will be in resulting system

Parent feature

must be included

Aspect-Oriented Change Realizations
and Their Interaction Article V.
Vranić, R. Menkyna, M. Bebjak, and P.
Dolog. Aspect-Oriented Change
Realizations and Their Interaction. e-
Informatica Software Engineering
Journal, 3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Capturing change interactions

with a feature diagram…
… Modeling change realizations

change realizations as features

affected software concept as feature model

change interaction as each dependency in feature model

Determining if features interact REQUIRES

FURTHER ANALYSIS OF SEMENTICS

Beyond capabilities of

feature modeling!

-indirect change

dependencies may

represent indirect

change interactions

Direct Change Interactions

Only one will be in resulting system

- Parent feature

must be included

Occurs among

alternative

features

Feature and

its subfeatures

Feature model in Czarnecki–Eisenecker basic notation

-affecting common join points

Aspect-Oriented Change Realizations and Their
Interaction Article V. Vranić, R. Menkyna, M. Bebjak, and
P. Dolog. Aspect-Oriented Change Realizations and Their
Interaction.
e-Informatica Software Engineering Journal, 3(1):43-58,

2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Partial Feature Model

Construction

From

Bottom Up
Grouping reached

changes in a

common subtree

 -identifying parent

 features

Aspect-Oriented Change Realizations and Their
Interaction Article V. Vranić, R. Menkyna, M. Bebjak, and P.
Dolog. Aspect-Oriented Change Realizations and Their
Interaction. e-Informatica Software Engineering
Journal, 3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

 1. Telephone Number Validating (realized as

Performing Action After Event): to validate a

telephone number the user has entered

 2. Telephone Number Formatting (realized as

Additional Return Value

Checking/Modification): to format a

telephone number by adding country prefix

 3. Project Registration Statistics (realized as

One Way Integration): to gain statistic

information about the project registrations

 4. Project Registration Constraint (realized as

Additional Parameter Checking/Modification):

to check whether the student who wants to

register a project has a valid e-mail address in

his profile

 5. Exception Logging (realized as Performing

Action After Event): to log the exceptions

thrown during the program execution

 6. Name Formatting (realized

as Method Substitution): to

change the way how student names are

formatted. 1.2.3.4.5.6.

Demonstration:

YonBan
Aspect-Oriented Change Realizations and Their Interaction Article V.
Vranić, R. Menkyna, M. Bebjak, and P. Dolog. Aspect-Oriented Change
Realizations and Their Interaction. e-Informatica Software Engineering
Journal, 3(1):43-58, 2009

Implemented

with aspects:

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Identifying Parents and

Final Refinement

Open concept of a system

(using [])

 due to no other

specification

DEPENDENCY (OF ENTERING

 THE NAME WHILE REGISTERING THE USER)

DEPENDENCIES

DEPENDENCY

Aspect-Oriented Change Realizations
and Their Interaction Article V.
Vranić, R. Menkyna, M. Bebjak, and P.
Dolog. Aspect-Oriented Change
Realizations and Their Interaction. e-
Informatica Software Engineering
Journal, 3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Resolving Conflicts

Interdependence of

sibling features –
direct subfeatures the

same parent feature

The code that

implements the

parent feature

altered by one of

the sibling change

features can be

dependent on the

code altered by

another sibling

change feature or

vice versa.

Aspect-Oriented Change Realizations and
Their Interaction Article V. Vranić, R.
Menkyna, M. Bebjak, and P. Dolog. Aspect-
Oriented Change Realizations and Their
Interaction. e-Informatica Software
Engineering Journal, 3(1):43-58, 2009

Resolving dependencies between

aspects by setting priorities to aspects

Affects user registration

parent feature
call()

 vs

execution()

poincuts

Aspect

Priority implicit

setting:

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Change Realization

Aspect-Oriented Change Realizations and
Their Interaction Article V. Vranić, R.
Menkyna, M. Bebjak, and P. Dolog. Aspect-
Oriented Change Realizations and Their
Interaction. e-Informatica Software
Engineering Journal, 3(1):43-58, 2009

Implementing a

change separately

Directly incorporating

a change to source code

Aspect-Oriented

 change realization

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Aspect-Oriented Change Realizations and
Their Interaction Article V. Vranić, R.
Menkyna, M. Bebjak, and P. Dolog. Aspect-
Oriented Change Realizations and Their
Interaction. e-Informatica Software
Engineering Journal, 3(1):43-58, 2009

Aspect-Oriented

Change Realization

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Source: Vranić, Valentino. (2010).

Aspect-Oriented Change Realization

Source: Aspect-Oriented Change Realizations and Their Interaction Article V. Vranić, R. Menkyna, M. Bebjak,
and P. Dolog. Aspect-Oriented Change Realizations and Their Interaction. e-Informatica Software Engineering

Journal, 3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Aspect-Oriented Change Realizations and Their Interaction Article V. Vranić, R. Menkyna, M.
Bebjak, and P. Dolog. Aspect-Oriented Change Realizations and Their Interaction. e-Informatica
Software Engineering Journal, 3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

 Trygve Reenskaug and James O. Coplien: The DCI Architecture: A New Vision of Object-Oriented Programming March 20, 2009

 Savkin: Data Context Interaction: The Evolution of the Object Oriented Paradigm

 Perdek, Jakub, and Valentino, Vranić. "Lightweight Aspect-Oriented Software Product Lines with Automated Product
Derivation." In New Trends in Database and Information Systems (pp. 499–510). Springer Nature Switzerland, 2023.

 FIGUEIREDO, Eduardo, Nelio CACHO, Claudio SANT’ANNA, Mario MONTEIRO, Uira KULESZA, Alessandro GARCIA, Sergio SOARES,
Fabiano FERRARI, Safoora KHAN, Fernando FILHO a Francisco DANTAS, Evolving Software Product Lines with Aspects: An Empirical
Study on Design Stability. 2008, s. 10.

 JACOBSON, Ivar, Martin GRISS a Patrik JONSSON, 1997. Software Reuse: Architecture, Process and Organization for Business
Success. USA: ACM Press/Addison-Wesley Publishing Co. ISBN 0-201-92476-5.

 KOHUT, Jan a Valentino VRANIC, Guidelines for using aspects in product lines: 2010 IEEE 8th International Symposium on Applied
Machine Intelligence and Informatics (SAMI) [online]. Herlany: IEEE, s. 183–188 [cit. 30.9.2021]. ISBN 978-1-4244-6422-7. Dostupné
na: doi:10.1109/SAMI.2010.5423741

 Developing Applications with Aspect-Oriented Change Realization: Article Valentino Vranić, Michal Bebjak, Radoslav Menkyna, and
Peter Dolog. Developing Applications with Aspect-Oriented Change Realization. In Proceedings of 3rd IFIP TC2 Central and East
European Conference on Software Engineering Techniques, CEE-SET 2008, Revised Selected Papers, LNCS 4980, October 2008, Brno,
Czech Republic, Springer, 2011

 Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling Article Radoslav Menkyna and
Valentino Vranić. Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling. In Proceedings of 4th
IFIP TC2 Central and East European Conference on Software Engineering Techniques, CEE-SET 2009, Revised Selected Papers, LNCS
7054, October 2009, Krakow, Poland, Springer, 2012.

 Aspect-Oriented Change Realizations and Their Interaction Article V. Vranić, R. Menkyna, M. Bebjak, and P. Dolog. Aspect-Oriented
Change Realizations and Their Interaction. e-Informatica Software Engineering Journal, 3(1):43-58, 2009

References

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming
https://www.sitepoint.com/dci-the-evolution-of-the-object-oriented-paradigm/
https://ieeexplore.ieee.org/document/5423741/
https://link.springer.com/chapter/10.1007/978-3-642-22386-0_15
https://link.springer.com/chapter/10.1007/978-3-642-28038-2_4
https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

	Snímka 1: Supporting Reuse With Aspects
	Snímka 2: Software Component
	Snímka 3: Composition Of Components
	Snímka 4: Domain Knowledge
	Snímka 5: Introducing Software Product Lines
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10: Use of ECaesarJ
	Snímka 11
	Snímka 12: The DCI Architecture: A New Vision of Object-Oriented Programming
	Snímka 13: MVC
	Snímka 14: MVC
	Snímka 15: MVC
	Snímka 16
	Snímka 17: Direct Manipulation Metaphor
	Snímka 18
	Snímka 19
	Snímka 20
	Snímka 21: Role Model Synthesis
	Snímka 22: What System is?
	Snímka 23: Domain Knowledge
	Snímka 24
	Snímka 25
	Snímka 26: Agile Software Development
	Snímka 27: Preserving Aspects in Code
	Snímka 28: Solution to Peer Use Cases: Intertype Declaration
	Snímka 29
	Snímka 30: No Representation of System Operations In Code Using OOP
	Snímka 31
	Snímka 32
	Snímka 33: DCI – Data Context Interaction
	Snímka 34
	Snímka 35: Data
	Snímka 36
	Snímka 37
	Snímka 38: Aspect-Oriented Change Realization
	Snímka 39: Domain Specific Changes
	Snímka 40: Catalog of Change Types
	Snímka 41: Domain Specific Changes
	Snímka 42: Applying Changes: Example
	Snímka 43: 1. Identification of Themes in Change Request
	Snímka 44: 2. Determining Crosscutting Theme
	Snímka 45: 3. Observing Corresponding Specification Change Type in Catalog
	Snímka 46
	Snímka 47: Finding Matching Realization Change in Catalog
	Snímka 48
	Snímka 49: Applying Change Type
	Snímka 50: Integration Changes: One Way Integration: Performing Action After Event
	Snímka 51: Applied Patterns
	Snímka 52: Enumeration Modification Change
	Snímka 53: Changing a Change Using Aspects
	Snímka 54: Capturing Change Interactions By Feature Models
	Snímka 55: Capturing change interactions with a feature diagram…
	Snímka 56: Direct Change Interactions
	Snímka 57
	Snímka 58
	Snímka 59: Identifying Parents and Final Refinement
	Snímka 60: Resolving Conflicts
	Snímka 61: Change Realization
	Snímka 62: Aspect-Oriented Change Realization
	Snímka 63
	Snímka 64
	Snímka 65
	Snímka 66: References

