Supporting Reuse
With Aspects

CDI, Software Product Lines and
Apect-Oriented Change Realization

Software Component

Software component is unit of composition with
explicitly determined (approval) and required
interfaces and dependencies. Similarly, it can be
independently deployed and is subject of
composition performed by third parties.
Component has no externally observable state.

Source: SZYPERSKI, Clemens, 2002. Component Software : Beyo
Object-Oriented Programming. ISBN 0-201-745572-0.

GOOD TO ACHIEVE REUSE?

Composition Of Compone
SOA Aspects

Services are composed Aspects are compose
based on the rest of the code

on Loose coupling Implementatio
Architectural level

Ral
Microservices

Micro-frontend Using orchestrator like
Docker Swarm or Ku

Architectural level

Domain Knowledge

Timeless compression of mental mo
end users and other stakeholders

Mental models whose patterns are tacidly
driven by commonality and variation

Source: James O. Coplien and Gertrud Bjrnvig. 2010.
Lean Architecture: for Agile Software Development. Wi

Introducing Software
Product Lines

Evolutionary “ Revolutiona

Existing Set of “ New Set o
Products Products

Revolutionary Evolutionary

No pro duct Development of a Gradual development
new product line of a product line

base before delivering during which
the first product products are being

delivered

Existin o Development of a new Gradual development
product line out of the of a product line out

pI‘OdllCt base existing set of products of the existing set of |
before delivering the products

first product

Source: https://poetisania.com/val/aosd/index.html

Prezi
j- vosch. Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach. Addison-Wesley, 2000.

Domain Engineering

domain
knowledge

domain
model

architec-

ture(s)

new
reqirements

domain-specific
languages

*generators

‘components

customer
needs

Application Engineering

new
requirements

features

product

configuration

product

m Prez! iztof Czarnecki. Generative Programming: Principles and Techniques of Software Engineering Based on Automated Configuration

and Fragment-Based Component Models. PhD thesis, TU Ilmenau, Germany, 1999. (Attributed to SEI.)

Table 1. Product line activities and associated requirements on implementation technologies

\!]

Activity Effort Factor
Effort for making code reusable Reuse techniques
Implementing | across the product line (development Variation types

reusable code

for reuse)

Granularity levels

F K Effort for testing reusable code Testability
ramewor
Engineering Effort for integrating system-specific | Component inte-
Reacting to code mto the product line gration impact
evolutionary ["gffort for adding and removing .
change variations (variability management) Automation
Maintenance effort Reuse techniques
Reusing Effort for reusing code to derive a |
concrete product (development with Reuse techniques
Application code reuse)
Engmeering Resolving Effort for creating a concrete product | Binding time
variations line member

Automation

Source:
Anastasopoulos,
M. and Muthig,
D. (2004) ‘An
Evaluation of
Aspect-Oriented
Programming as
a Product Line
Implementation
Technology’, in J.
Bosch and C.
Krueger

(eds) Software
Reuse: Methods,
Techniques, and
Tools. Berlin,
Heidelberg:
Springer Berlin
Heidelberg, pp.
141-156.

zZi

ResourceAllocation

i ResourceKind,
System
resource = —
Y
esource . llocation
Resource <(1 Allocation éi
resource | »
timeSlot
TimeSlot System
kind | 1 1\/ request
Resource kind R ¢ request
Kind 1 SRR
A
kind
A\
<<bind>>
<Resource -> Car, ResourceKind -> CarSpec, System -> CarRentalSystem=>
[]
CarRental

OMG. OMG Unified Modeling LanguageTM (OMG UML), Superstructure. Version 2.4.1, 2011.

Use of ECaesarJ Why?

Insufficient PROVIDES LARGE-SCALE SELECT
mechanisms in OOP cOMPOSITION MECHANISMS

for modularizing the
features l \

Only for individual

objects/classes VIRTUAL CLASSES PROPAGATING T
inner classes MIXIN COMPOSITI
-late-bound instantiation »
: C t t
Multiple affected -can be refined in subclasses £'ZZ”3§QJZ7 Z:zos’s)gsga z

objects/classes

by Features of enclosing class ALL INHERITED DEC
o-scale -as family members OF VIRTUAL CLASS
Large™ : ¢ WITH THE SAME
extension - members of instances o

mechanism the enclosing class [family objects/cla

1 cclass House5tructure {
abstract cclass Location { }

abstract cclass CompositeLocation extends Location {
abstract List<7 extends Location> locations();

& om s W

Feature
In family class’

9

}

cclass Koom extends Location { }

cclass Floor extends CompositeLocation |
List<-Room>> rooms;

List<Room> rooms() { return rooms; }
void addRoom(Room r) { rooms.add(r);]
List<? extends Location> locations() { return rooms();]

feature-oriented
modularization of
software product lines

}
To not confuse this with Java class Domain ' cclass House extends CompositeLocation {
-to use it as extension ofJava . List< F'ﬂﬂré floors;
Ob eCtS 19 List<_Floor> floors() { return floors; }
J 20 void addFloor(Floor r) { floors.add(r); }

CC lass In virtual . List=? extends Location> locations() { return floors(); }

classes 2

New CaesarJ dat structure =
24 House house = new House();
Taken from: Rashid, A., Royer, J.C., Rummler, A. (eds.): 26 House house() { return house; }
Aspect-Oriented, Model-Driven Software Product Lines: 2 }
The AMPLE Way (09 2011)

Figure 6.3 Implementation of a house structure as a family class.

The DCI Architecture:
A New Vision of Object-Ori

Programming

- Vision to capture the end user cognitive model
Model of roles and interaction between these rol

S
- A way how to combine roles, algorithms, objects, and
associations between them to provide a stronger mapping
between the code and the end-user mental model

Objects capture structure, but fail to capture
ource: https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-objec

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

Controller

Source: https://www.linkedin.com/pulse/model-view-controller-architecture-pro

https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

Defines interact
between the obj

RO les that play them

Model-View-Controller
Perspective

Source: https://www.linkedin.com/pulse/model-view-controller-architecture-pro

https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

Controller

vse' pct”
MVC-U

ate The way how to separate
\)96 the representation of informatio
from user interaction

CAPACITY: Model-View-Controller-User

Source: https://www.linkedin.com/pulse/model-view-controller-architecture-pro

https://www.linkedin.com/pulse/model-view-controller-architecture-programming-aditira-jamhuri

Interpretation of data:

MVC_ U Information
Key element in end Theaim of good progr

user mental model capturing the information
in the data model

Data “ Staff in User Head

-representation of information

-in computers: b1ts -meanmg in user I;ead-'-mtgractlon between b

-' ~

Union of cognitive model and data mpd'el "‘\ computer
. . _ mental * .. data
Direct manipulation model -~ “A
metaphor: o 7

the sense that end users are actually
manipulating objects in memory that]’1
reflect the images in their head User

Source: https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-obj

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

Direct Manipulation Metaf

oo TR
= -,

P T G B ,
Model %%'gg{ S Yi1 .. computer
Fi & Controller ~~. data
ilters the data Y, A
| 5D
[
[

: o L8 &P
The Controller creates Views ;. g &
and coordinates Views and (4%

-~

1
) *
Models. 1‘_;][|

PACITY: Model-View-Controller-User |

Source: https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-Qj

B Geod BN EEN BN BN BN BN Bl BN Geed

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

Raw Data “ Simple Cognitive

Basic building blocks MOdel Filters the data

Example: half-call in telephony domain

Telephone operator: duration, o .
: : Supported user illusion with
may shrink number of parties

Another actor: sees data
differently/ different perspective

‘ Supported user illusion

manipulating with r

User has a feel that he

w&h mo

Particularly simplistic rule of thumb EXte
nouns ¢===) verbs Deriv

objects methods

Solved by:

Objects are stable

All code in objects thus cannot
represent a change

Smalltalk

class as implementation tool S
for object as analysis concept

inheritance graphs as design abstra
-fully represented by base class i

Inheritan

Problem of inheritance hi

Agile vision of separed
evolution and

maintainability

programming by
extension

stable
Supports

open-closed Loy added methods either

Changeable principle didn't appear in the base clas

Data domain entity class RO les

-behaviors that are abou
New concept of an actio

dynamic behavioural

- domain classes should be dumb

stable data models

OBJECT

Unifies two models

roles embody generic, abstract alg

weave the algorithms through the

in users head WH AT
SYSTEM I N r -i N
WHAT IS DATA -ESS fro?tgt:ger's?ind into the
SYSTEM MODEL - data with their own vocabulary an
DOES for thinking

LGORITHM
M O D E L Dynamic behaviour

Role Model Synthesis

Object-Oriented Role Analysis Modeling

A
() (Buyi
D_C _J L D A::'i:g Tickets
g
o — —
= Travel Manage
e @ CO——CDO
")) Planni
Role in one model plays C _J | _J | D anning

environment role in another

Each plays one or more roles - Objects
Figure 10. This 'hat stand' synthesis illustration is due to Philip Dellaferra.

Source: Reenskaug, Trygve; P
(1996). Working with Objec
Engineering Method. Ma

What What
System is? System D

. ingle user perspective
All users perspective Sing persp

Domain Knowledge “ IPE meSEZLMO

Objects “ Roles \r
o

Interaction

Domain Analysis “ Use Case Mo

Source: https://poetisania.com/val/as/index.html

Domain Knowledge

Timeless compression of mental mo
end users and other stakeholders

Mental models whose patterns are tacidly
driven by commonality and variation

Source: James O. Coplien and Gertrud Bjrnvig. 2010.
Lean Architecture: for Agile Software Development. Wi

There has been no established
domain knowledge so far?

RELY ON THE END USER CO
MODEL OF THE DOMAIN

Remove
Order

Source: https://poetisania.

There has been no established domain know
RELY ON THE END USER COGNITIVE MODEL O

U S E'CAS ES What System Does

l I LEAN ARCHITEC

Create
Order

Remove
Order

Source: https://poetisania

Producing only
neccessary witho
an existing functi

... like stringing cor

USE-CASES
preserved in code

Lean ArChiteCtu re Only as much architecture as

Agile Software Developme

Avoid producing waste.
Pull, Do not push end users

‘ Making decisions at
responsible moment

System architecture has to
the end user cognitive mode
able to accommodate emergi
use-cases

» Preserving Aspects in

Use-case modularity problem

Previously unsupported in analytical models and
in implementational environments

Jacobson, I., Ng, P.: Aspect-Oriented Software Deve
Addison Wesley Professional (2004), ISBN 0-321-26

Solution to Peer Use Cases:
Intertype Declaration

-we create use case slice...

...Containing Only SpeCifiCS fOI’ thiS ¥ adigm for UI1L Community Edition [notfor commercial use]
use case (Accounting the “:;“-‘n:f;”
) purchase in Figure)
= Tt A R <<asped>>
-------- 7 Nauctuj nakup - ctuil
''''' { _ rauttujnskup) \) Nauctigaup
------ - = T T o Class Extensions
S Ty C SpravaPredaja Tovar
« einjnskup ! Operations Operations
/ T \ pridajNakup() 2vyseniePoctu()
zdroj riadenie identifikaciaPolozky(znizeniePoctu()
Tovar _SpravaPredaja nauctujPolozku()
vyhladaj () pridajNakup ()
zvy.'aen:!.epoctu() identifikaciaPolozky() ZI’USPO|OZKUO
znizeniePoctu() nauctujPolozku()
zrusPolozku()

droje z Bc. Pavol Michalco: PRIPADY POUZITIA A TEMY V PRISTUPE THEME/DOC

https://jakubperdek-26e24f.gitlab.io/pdfs/applicationOfThemes.pdf

o

—

S—
T e e m— —

OrderManager

T —

—
___.—--""’

orderProduct)

Product

o

— —
— — — —

~ ~
\ Cancel an Order J

—
— e—— —

— — — —

OrderManager

cancelOrder()

NS

OrderManager

orderProduct()
cancelOrder()

Product

Use case:

Customer

Cancel an Order

Place an Order

No Representation of Syst
Operations In Code Using

Object B

Object B

Message C1

Message B
e B1 St

Message D2

Message D1

Object D
Use Case 1

rce: https://www.sitepoint.com/dci-
-evolution-of-the-object-oriented-paradigm/

Aole X

played by

Use Case 1

Message 8!

'
Role ¥

playec by

| \ Mossage Ct

Role Z

phryed by

Message A

Role W

played by

Massage D1
Mesaage D2

I |

https://www.sitepoint.com/dci-

Object B

Message B2
. Object C

Message D3 Message B3

Object D
Use Case 2 I '

rce: https://www.sitepoint.com/dci-

Role T

played by

Message B2
Message B3

Aole U

Message A2

Role Q

played by

Object D

Message D3

evolution-of-the-object-oriented-paradigmﬁ

L

Message DO

Use Case 2

https://www.sitepoint.com/dci-

«Use case»

Place an Order

initialize()
run()

«Use case role» _
OrderBeingPlaced |~

create()
purchase()

N~

myorder : Order

DCI - Data Co

Interacti

-invented by Trygv

«Use case role»
- -7 PlacedOrders
addOrder()
N
AN
\
\
N
«use case role» \\
N N
) SelectedProduct \«bind»
addToOrder() AN
\
\

N\

]
|
|
|
: «bind»
|
|

AV

placedOrderList : OrderList

computer : Product

Source: https://poetisania.com/val

Context

Place an Order
D C I initialize()
run((use cases)

«use case role»
- PlacedOrders .
«use case role» - addOrder() Inte I'a.CtIOIl
OrderBeingPlaced |-~ <
create() N AN
purchase() AN R \\
/ N «use case role» N
,/ N SelectedProduct AN
<{b|nd»
// addToOrder() N
/ T \\
/«bind» | N\
/ ' h
| A
, I i ~|
lgj | «bind> placedOrderList : OrderList
I
myorder : Order \:/
computer : Product
Customer
ource: https://poetisania.com/val/aosd/index.html
Order <> OrderList

Product

Data
(from domain analysis)\

DCI Class
D at a -expresses exclusively I n te r

object inner functionality
(not concerning neighbor objects)

- "What the system is” LOCALIT

-a data and associated local methods -each use

SEPARATION TOWARDS
STABLE SOFTWARE Source code matches

the runtime }V

-which values are assigned to particula

7

Context
- ”What the system does”

CI ConteXt -contextual behavior - only methods which o
-expresses only communication between objects S CHANG\NG RAP\DLY

=> Observable from t

DCI: Data, Context and Interaction

Decouples
the stable part of the architecture
(domain objects — data)
from
its variabile part
(use cases)
with
their flexible binding

(I'Ole S) Source: https://poetisania.com/v.

Variability at the model level?

Theme/UML
> The themes to be composed can be
selected
>The composed model can be

generated

Source: https://poetisania.com/val/aosd/index.html

Aspect-Oriented Model-Driven Software
_Product Line Engineering (AO-MD-PLE)

Aspect-Oriented
Change Realization

CHANGE AS CROSSCUTTING REQUIR

Change

-initiated by a change request made by stakeholder (user,...)

Change request

-usually focused on changes to be realized

-containing even interrelated requirements
- has to be split into individual changes, their generalization
and aggregation according to particular domain

public class SMTPServerM extends SMTPServer {

[[[.
Domain Specific
public aspect SMTPServerBackupA {
public pointcut SMTPServerConstructor(URL url,

C h a n ges -returning another SMTP String user,
String password):

Server instead of original one call(SMTPServer.new (..)) && args(url, user,

using Cuckoo’s egg pattern password):
) SMTPS d(URL url, Stri ,
public class AnotherClass extends MyClass { SRS . S:;?fgusea;word):
SMTPServerConstructor(url, user, password)
{
} return getSMTPServerBackup(proceed(url, user,
. password));
public aspect MyClassSwapper { }

private SMTPServer

public pointcut myConstructors():
getSMTPServerBackup(SMTPServer obj)

call(MyClass.new ()): Generalizationto |
Object around(): myConstructors() Class exchange if (obj.isConnected()) {
{ change type return obj:
return new AnotherClass(): } else {
} return new SMTPServerM(obj.getUrl(),
Source: Aspect-Oriented Change Realizations and Their obj.getUser(),
} Interaction Article V. Vranic, R. Menkyna, M. Bebjak, and P. Dolog. obj.getPassword());
Aspect-Oriented Change Realizations and Their Interaction. e- }

Informatica Software Engineering Journal, 3(1):43-58, 2009) }

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Catalog of Change Types

-to provide developer hints about incorporated changes

MAINTAINING CATALOG OF CHANGES _:;;;3?fff'f;???i’ 2

Generably Applicable Change

Domain Specific Change

Source: Aspect-Oriented Change Realizations and
Their Interaction Article V. Vranic, R. Menkyna, M.
Bebjak, and P. Dolog. Aspect-Oriented Change
Realizations and Their Interaction. e-Informatica
Software Engineering Journal, 3(1):43-58, 2009

Iﬁiplgm[—?ﬂtaﬂﬂn
. _,.-ch;ﬂ'.l.ge WF es

Catalog of change types

1. Generalize the change (description)

2. Find the corresponding specification change type in
the catalog

3. Apply the matching implementation type with its
code scheme

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

public class SMTPServerM extends SMTPServer {

[o o
Domain Specific }
public aspect SMTPServerBackupA {
. public pointcut SMTPServerConstructor(URL url,
-returning another SMTP Server String user,
a n es instead of original one using Cuckoo’s : g 5y 8itring (password):
call(SMTPServer.new (..)) && args(url, user,
egg pattern o),
SMTPServer around(URL url, String user,

String password):
SMTPServerConstructor(url, user, password)

public class AnotherClass extends MyClass {

{
}__ _ return getSMTPServerBackup(proceed(url, user,
public aspect MyClassSwapper { Generalization to Class } password));
public pointcut myConstructors(): exchange change type private SMTPServer

getSMTPServerBackup(SMTPServer obj)

{
if (obj.isConnected()) {

return obj;

call(MyClass.new ());
Object around(): myConstructors()

{

return new AnotherClass(); } else {
} Clacs Exch return new SMTPServerM(obj.getUrl(),
. ass Exchange obj.getUser(),
} Generably Applicable Change Change Type - Cuckoo's Egg ob;.getPassgord()):

Source: Aspect-Orje}nted Change Realizations and Their
Interaction Article V. Vranic¢, R. Menkyna, M. Bebjak, and P.
Dolog. Aspect-Oriented Change Realizations and Their
Domain Specific Change LUEEIELLCERIEEE RN Interaction. e-Informatica Software Engineering Journal,
3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Applying Changes: CHAN
=xample REQUIREMEN

CHRO3: Change CHRO03-1: The
administrator can block and

The administrator | " unblock an account from the
should be able to block Jccounts view

and unblock an

account from the
accounts view. ——} Change CHR0O3-2: A user

cannot log in if his/her

Source: https://poetisania.com/val/ account 1s blOCkGd

1. Identification of Them
in Change Request

«requirement»
CHRO03-2: User cannot login if his
account is blocked.

N

<> <O

Check User Blocked Log In

Source: https://poetisania.com/val/

2. Determining Crosscutt
Them

«requirement»
CHRO03-2: User cannot login
if his account is blocked.

Check User Blocked

Source: https://poetisania.com/val/

3. Observing Correspond
Specification Change Typ
Catalog

<requirement» <requ
requirement»
Introduc Addt nal Con t int on Fields Introduce Additional Constraint
on Fields
l . «Crosscut» '
Introduce Additional Validate Form

Constraint on Fields

e: https://poetis com/val/

«requirement»

«requirement» CHRO03-2: User cannot login
CHRO3-2: User cannot login if his if his account is blocked.
account is blocked.

Check User Blocked Log In Check User Blocked

Find the corresponding specification change type in the catalog

«requirement» g
Introduce Additional Constraint on Fields Introduce Additional Constraint

on Fields
«Crosscut»

----------------- >

2oduce Additional Introduce Additional Validate Form

nirod Validate Form R .
.: ‘:p . -
Z_...lint on Fields Sonsiratiton Felcs Source: http

Finding Matching Realiza
Change in Catalog

Feyc— 09999 e — — —

Additional Parameter Check Additional Parameter Check

; | Additional Parameter Check = TargetClass
: | targetClass: TargetClass ‘
! #, checkParameters ()
i 5 _do_targetMethod ()

«t!face» ‘—r‘ L targetClass:TargetClass & targetMethod ()
i 1 targetMethod |

WV | 1.1: checkParameters
‘ 1.2 _do_targetMethod
Introduce Additional Constraint on Fields L.2= targetMethod
|
Source: https://poetisania.com/val/

—| _______________

«theme»

Additional Parameter Check s —
; =] Additional Parameter Check = TargetClass
i targetClass: TargetClass
i l bl o | {5, checkParameters ()
«t'[ace» ’ E targetClass:TargetClass ‘ g;drog_::;qgﬁﬂﬂﬂ?;)d ()

A4

<

Introduce Additional Constraint on Fields

1.1: checkParameters

1.2: _do_targetMethod

Apply the change to the original model element | Check User Blocked
I :UserLoginForm I user:User E:“d : BOO':"
| 6 <UserLcIJginForm.validateForm()> : Expression O (e | [Dl | §Z£v:;§siﬁ;h8
«theme» 1: valdateFor } @ setvaiid)
I(:he(:l(User Blocked : 1:' 11 d\eckUseleoded v
! | 11.1: isBlocked | £ user
i | | o isBlocked ()
«blnd» ‘ \]Itl 1.1.2: setValid |
binding[<UserLoginForm.validateForm()>] | |
i | _] 132; __do_validaLeForm
L L_“’af“'“ﬁl
«theme» |
Log In 1 l

Applying Change Type

6. Introducing Domain independent

3. Searching and getting Generally applicable code scheme for each Generally Domain Specific Change
change types according to Domain specific applicable change
(realization) &

————————————— Code Scheme 1

types to complete it (G# - G1, G2) %ﬁ
2

4, Introducing i ey A
aspects as Generally (speciali (realization) |I) ;
applicable change type ————-[D2cCode |
2. Indentifying domain
e N N e D1 Code
specific changes (D# - D1, D2) (aggregation)

5. Introducing ‘AO Pattern 1 h 1. Developer chg
change

aspects to complete

Domain specific change Figure 1. Generally applicable and domain specific changes

Source: Aspect-Oriented Change Realizations and Their Interaction Article V. Vranié, R. Menkyng
spect-Oriented Change Realizations and Their Interaction. e-Informatica Software Engineering

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Integration Changes:

One Way Integration: Performing Action After Event

such as Notification of inco

public aspect PerformActionAfterEvent { the integrating application notifi
pointcut methodCalls(TargetClass t, int a):...; application of relevant events
after(/* captured arguments */):
methodCalls(/* captured arguments /)

Capturing certain events

{
performAction(/* captured arguments =/);
}
private void performAction(/* arguments */) Performed action after
{

/% action logic x/ Such as a post to the newsletter sign-
} o script and pass it the e-mail addr
the newly signed-up or deleted

}

Applied Patterns
Method Substitutio

Boudary Control

pointcut prohibitedRegion():
(within(application.Proxy)
&& call(void *. * (..)))
| (within(application.campaigns.)
&& call(void *. * (..)))
within(application.banners. +)
call(void Affiliate . decline (..))
call(void Affiliate . delete (..));

public aspect MethodSubstition {
pointcut methodCalls(TargetClass t, int a): . . ;
ReturnType around(TargetClass t, int a):
methodCalls(t, a) {
if (.. .){

. . . } // the new method logic
else

proceed(t, a);
}
}

Souirce: Aspect-Oriented Change Reali
Interaction Article V. Vranié, R. Menk
Dolog. Aspect-Oriented Change Re
Interaction. e-Informatica Softw
3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Enumeration Modificatio
Change

Introducing new enumeration value:

public aspect NewEnhumType {
public static EnumValueType
EnumType.NEWVALUE = new EnumValueType(10, ™);

Source: Aspect-Oriented Chang
Their Interaction Article V. Vr
Bebjak, and P. Dolog. Aspec
Realizations and Their Int
Software Engineering J

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Changing a Change
USINg ASpeCts rncmamms o na

=> MAKES FURTHER CHANGES

1. Use the primitive pointcut to capture execution of all advices:

adviceexecution()

2. Annotating and accessing the advices:

within()/withincode()

Or handling multiple advices by annotating each with the pointcut:

@annotation()

Capturing Change Interac
By Feature Models b

- Mutual change dependencies of some change realizations D0/0g- Aspect-Orien
- Dependencies on underlying system affected by other Informatica Software

FEATURES

-virtually pluggable
as variable features

EATURE MODELING ©nly on will be in resulting system

-including variability among changes

-variable features are used as the systems extensions

Vranic, R. Menkyn
Realizations and The

change realizations Journal, 3(1):43-58, 20

Possible escalation into a serious
problems

Affiliate
Marketing

‘/
SMTP Server || SMTP Server |[JNewsletter Restricted W User Name
Ngackup A Backup Bg#! Sign Up #|| Administrator Account ||

Nisplay Change

Hide Options Unavailable
%, Restricted Administratoz]

Parent feature
must be included

Figure 2. Affiliate marketing software change realizations in a feature diagram

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Capturing change interac

with a feature diagram...
... Modeling change realiz

o -indirect ch
change realizations as features dependencie

represent
affected software concept as feature model change interac

change interaction as each dependency in feature model

Beyond capabili
feature mode

Determining if features interact REQUIRES
FURTHER ANALYSIS OF SEMENTICS

"N

Direct Change Interaction

-affecting common join points, ’
Occurs among

Feature an

. Affili 1
alternative hate its subfeatL:res
'.--/ ' - Parent feature
features *‘ must be included

User Name
\Display Change

SMTP Server
Backup B Sign Up 4{| Administrator Account

l

Hide Options Unavailable
s Restricted Administratg

Only one will be in resulting system

Aspect-Oriented Change Realizations and Their
Interaction Article V. Vranic, R. Menkyna, M. Bebjak, and
P. Dolog. Aspect-Oriented Change Realizations and Their
nteraction. Figure 2. Affiliate marketing software change realizations in a feature diagram
-Informatica Software Engineering Journal, 3(1):43-58,
09

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Partial Feature Model
Construction

From
Bottom Up

Grouping reached

changes in a

common subtree
-identifying parent
features

Journal, 3(1):43-58, 2009

[Application
Concept]

Tt

[Feature A]

o e

!

[Change 1] | | [Feature E] |
| . [Feature B] [Feature D]

[Change 2]

[Change 3]

Aspect-Oriented Change Realizations and Their
Interaction Article V. Vranié, R. Menkyna, M. Bebjak, and P.
Dolog. Aspect-Oriented Change Realizations and Their

Interaction. e-Informatica Software Engineering

b ———

[Feature C]

P

[Change 6]

o

[Change4]

[Change 5]

Figure 3. Constructing a partial feature model

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

» 1. Telephone Number Validating (realized as
Performing Action After Event): to validate a
telephone number the user has entered

» 2. Telephone Number Formatting (realized as
Additional Return Value
Checking/Modification): to format a
telephone number by adding country prefix

» 3. Project Registration Statistics (realized as
One Way Integration): to gain statistic
information about the project registrations

» 4. Project Registration Constraint (realized a:
Additional Parameter Checking/Modification)
to check whether the student who wants to

Demonstra

YonBan

Aspect-Oriented Change Realizations and Their |

Vranié, R. Menkyna, M. Bebjak, and P. Dolog.

Realizations and Their Interaction. e-Informatica So

Journal, 3(1):43-58, 2009

[YonBan]

%N

register a project has a valid e-mail address i
his profile

Exception
Logging

Name
Formatting

5. Exception Logging (realized as Performing
Action After Event): to log the exceptions
thrown during the program execution

6. Name Formatting (realized Implemente

as Method Substitution): to
change the way how student names are
formatted.

d '
with aspects:

6.

$

Project
Registration
Constraint

Project
Registration
Statistics

Telephone
Number
Formatting

Telephone
Number
Validating

cfan p ature onstru
4,

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

|dentifying Parents

Final Refine

DEPENDENCY (OF ENTERING
THE NAME WHILE REGISTERING THE USER)

Open concept of a system

(using [])

due to no other

specificati

[YonBan]

Exception

[YdBan]

Registration]

[User

DEPENDENCIES

[Name
Entering]

Name
Formatting

Project Project [Telephone Number
Registration Registration Entering]
Constraint Statistics
Telephone Telephone
Number Number
Formatting Validating

Exception
Loggin

[N ame
Entering]

[User
Registration]

[Telephnﬁe Number
Entering]

— AN

Name
Formatting

Figure 5

Project
Registration
Constraint

Project Telephone
Registration Number
Statistics Formatting

Telephune
Number
Validating

. Identifying parent features in YonBan partial feature model construction

Figure 6. The final YonBan partial feature model

Aspect-Oriented CXang
and Their Interaction

Vranic, R. Menkyna
Dolog. Aspect-Ori
Realizations a

Journal,

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Resolving Conflicts

[YonBan]
Interdependence of
Exception [User sibling features -
Logging Registration] direct subfeatures the
me parent feature
[Name Project Project [Telephone Number
Entering] Registration Registration Entering]
AS.pe.Ct ' o Constraint Statistics vice versa.
Priority implicit
settin g: Name Telephone Telephone
Formatting | Affects user registratio Number Number Aspect-Oriented Change
Call() parent feature Formatting | | vaiidating Their Interaction Article
VS. Figure 6. The final YonBan partial feature model M?nky na, M. Bebjak,
xecutlon() Oriented Change R

Resolving dependencies between Interaction. e-Inf

poincuts aspects by setting priorities to aspects Engineering Jo

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Application v1.0

Implementing a <:> Directly incorporating
change separately a change to source code

Aspect-Oriented
change realization main devlelopment

Aspect-Oriented Change Realizations and
Their Interaction V. Vranié, R.
Menkyna, M. Bebjak, and P. Dolog. Aspect- v

Oriented Change Realizations and Their
Interaction. e-Informatica Software
Engineering Journal, 3(1):43-58, 2009

Application v1.1

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Aspect-Oriented
Change Realization

Aspect-Oriented Change Realizations and
Their Interaction Article V. Vranié, R.
Menkyna, M. Bebjak, and P. Dolog. Aspect-
Oriented Change Realizations and Their
Interaction. e-Informatica Software
ngineering Journal, 3(1):43-58, 2009

Application v1.0

main development

Application v1.1

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

customize > Application v1.0
Client 1 Customization

Application v1.0

|
|
extfact
v
main devlelopment o . =
Customization Changes
/
1
|
Source: Vranic¢, Valentino. (2010). reaPpIy
Aspect-Oriented Change Realization :

customize Application v1.1
Client 1 Customization

Application v1.1

customize > Application v1.0
Client 1 Customization

Application v1.0

ext'ract
V
main development o A
@tomlzan‘on Cha@ q S p e Ct S
reai)ply
v . v
Application v1.1 customize > Application v1.1

Client 1 Customization

Source: Aspect-Oriented Change Realizations and Their Interaction Article V. Vra
and P. Dolog. Aspect-Oriented Change Realizations and Their Interaction. e-Inf
Journal, 3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

Application v1.0

customize Application v1.0

main development

Application v1.1

Client 1 Customization

T Aspect-oriented
é Ccumomzsioncranges > = ASDECLS el , .
change realization

customize Appllcatlon v1.1

Client 1 Customization

Aspect-Oriented Change Realizations and Their Interaction Article V. Vranic
Bebjak, and P. Dolog. Aspect-Oriented Change Realizations and Their Inte
Software Engineering Journal, 3(1):43-58, 2009

https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

References

>

Trygve Reenskaug and James O. Coplien: The DCI Architecture: A New Vision of Object-Oriented Programming M

Savkin: Data Context Interaction: The Evolution of the Object Oriented Paradigm

Perdek, Jakub, and Valentino, Vrani¢. "Lightweight Aspect-Oriented Software Product Lines with Automated Produc
Derivation." In New Trends in Database and Information Systems (pp. 499-510). Springer Nature Switzerland, 2023.

FIGUEIREDO, Eduardo, Nelio CACHO, Claudio SANT’ANNA, Mario MONTEIRO, Uira KULESZA, Alessandro GARCIA, Sergi
Fabiano FERRARI, Safoora KHAN, Fernando FILHO a Francisco DANTAS, Evolving Software Product Lines with Aspects: A
Study on Design Stability. 2008, s. 10.

JACOBSON, Ivar, Martin GRISS a Patrik JONSSON, 1997. Software Reuse: Architecture, Process and Organization for Busine
Success. USA: ACM Press/Addison-Wesley Publishing Co. ISBN 0-201-92476-5.

KOHUT, Jan a Valentino VRANIC, Guidelines for using aspects in product lines: 2010 IEEE 8th International Symposium on App
Machine Intelligence and Informatics (SAMI) [online]. Herlany: IEEE, s. 183—188 [cit. 30.9.2021]. ISBN 978-1-4244-6422-7. Dostu
na: doi:10.1109/SAMI.2010.5423741

Developing Applications with Aspect-Oriented Change Realization: Article Valentino Vranic, Michal Bebjak, Radoslav Menkyna, a
Peter Dolog. Developing Applications with Aspect-Oriented Change Realization. In Proceedings of 3rd IFIP TC2 Central and East
European Conference on Software Engineering Techniques, CEE-SET 2008, Revised Selected Papers, LNCS 4980, October 2008,
Czech Republic, Springer, 2011

Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling Article Radoslav Menkyn
Valentino Vranic. Aspect-Oriented Change Realization Based on Multi-Paradigm Design with Feature Modeling. In Pro
IFIP TC2 Central and East European Conference on Software Engineering Techniques, CEE-SET 2009, Revised Selecte
7054, October 2009, Krakow, Poland, Springer, 2012.

Aspect-Oriented Change Realizations and Their Interaction Article V. Vrani¢, R. Menkyna, M. Bebjak, and P.
Change Realizations and Their Interaction. e-Informatica Software Engineering Journal, 3(1):43-58, 2009

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming
https://www.sitepoint.com/dci-the-evolution-of-the-object-oriented-paradigm/
https://ieeexplore.ieee.org/document/5423741/
https://link.springer.com/chapter/10.1007/978-3-642-22386-0_15
https://link.springer.com/chapter/10.1007/978-3-642-28038-2_4
https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_3/Vol3Iss1Year2009Informatica.pdf.pdf

	Snímka 1: Supporting Reuse With Aspects
	Snímka 2: Software Component
	Snímka 3: Composition Of Components
	Snímka 4: Domain Knowledge
	Snímka 5: Introducing Software Product Lines
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10: Use of ECaesarJ
	Snímka 11
	Snímka 12: The DCI Architecture: A New Vision of Object-Oriented Programming
	Snímka 13: MVC
	Snímka 14: MVC
	Snímka 15: MVC
	Snímka 16
	Snímka 17: Direct Manipulation Metaphor
	Snímka 18
	Snímka 19
	Snímka 20
	Snímka 21: Role Model Synthesis
	Snímka 22: What System is?
	Snímka 23: Domain Knowledge
	Snímka 24
	Snímka 25
	Snímka 26: Agile Software Development
	Snímka 27: Preserving Aspects in Code
	Snímka 28: Solution to Peer Use Cases: Intertype Declaration
	Snímka 29
	Snímka 30: No Representation of System Operations In Code Using OOP
	Snímka 31
	Snímka 32
	Snímka 33: DCI – Data Context Interaction
	Snímka 34
	Snímka 35: Data
	Snímka 36
	Snímka 37
	Snímka 38: Aspect-Oriented Change Realization
	Snímka 39: Domain Specific Changes
	Snímka 40: Catalog of Change Types
	Snímka 41: Domain Specific Changes
	Snímka 42: Applying Changes: Example
	Snímka 43: 1. Identification of Themes in Change Request
	Snímka 44: 2. Determining Crosscutting Theme
	Snímka 45: 3. Observing Corresponding Specification Change Type in Catalog
	Snímka 46
	Snímka 47: Finding Matching Realization Change in Catalog
	Snímka 48
	Snímka 49: Applying Change Type
	Snímka 50: Integration Changes: One Way Integration: Performing Action After Event
	Snímka 51: Applied Patterns
	Snímka 52: Enumeration Modification Change
	Snímka 53: Changing a Change Using Aspects
	Snímka 54: Capturing Change Interactions By Feature Models
	Snímka 55: Capturing change interactions with a feature diagram…
	Snímka 56: Direct Change Interactions
	Snímka 57
	Snímka 58
	Snímka 59: Identifying Parents and Final Refinement
	Snímka 60: Resolving Conflicts
	Snímka 61: Change Realization
	Snímka 62: Aspect-Oriented Change Realization
	Snímka 63
	Snímka 64
	Snímka 65
	Snímka 66: References

