
Complexity of In-Code Variability:
Emergence of Detachable Decorators

Jakub Perdek(B) and Valentino Vranić

Institute of Informatics, Information Systems and Software Engineering Faculty of
Informatics and Information Technologies, Slovak University of Technology in

Bratislava, Bratislava, Slovakia
{jakub.perdek,vranic}@stuba.sk

Abstract. This paper presents a study on how selected approaches to
expressing variability in code affect code complexity. To evaluate and
compare the complexity of essential aspects of different approaches to in-
code variability management, we designed five prominent cases of how
variability is expressed in code: using decorators, using decorators with-
out variability configuration expressions, using wrappers, using decora-
tors with additional unwanted dead code constructs not being included
for illegal decorators, and with no variability expressed in code at all.
To measure code complexity in these cases, we used a framework for
evaluating TypeScript code that we implemented in Java. Our frame-
work is capable of assessing 15 metrics, comprising several variants of
the LOC, Halstead, cyclomatic complexity, and cyclomatic density met-
rics. Decorators are detachable because they are decorating particular
code construct with a predefined naming convention and no effects on
code. The study was conducted on a software product line aimed at
graphical applications we developed for evaluation purposes. We came
to a range of interesting findings, such as that the detachable decora-
tor version of introduced annotations is significantly less complex than
other ways of expressing variability in code, annotations in comments
(as in pure::variants), and tags (as in frame technology) do not directly
affect the complexity of business functionality, decorators can be entirely
separated from business logic, etc.

Keywords: code complexity · software product lines · variability
management · decorators · variability configuration · comparative
analysis

1 Introduction

Variability management is the central part of software product lines. Its in-code
realization may significantly increase code complexity [5,9,24]. The configuration
of products in software product lines is commonly managed with transformations
or with visual languages [24]. Consequently, the exponential increase [27] of
variants by the number of features complicates manual corrections [3], even when
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Achilleos et al. (Eds.): ICSR 2024, LNCS 14614, pp. 51–71, 2024.
https://doi.org/10.1007/978-3-031-66459-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66459-5_4&domain=pdf
http://orcid.org/0009-0003-3616-4373
http://orcid.org/0000-0001-9044-4593
https://doi.org/10.1007/978-3-031-66459-5_4


52 J. Perdek and V. Vranić

resolving conflicts while incorporating new features into an existing software
product line [1]. These corrections and conflicts should be resolved automatically.
However, the complexity of in-code variability management constructs is neither
evaluated, nor automatically applied to optimize configuration expressions. Its
because they are used in comments or configuration variables are interleaved
with business logic code.

This paper presents a study on how selected approaches to expressing vari-
ability in code affect code complexity. It is organized as follows. Section 2 presents
some approaches to dealing with the complexity of expressing variability in code.
Section 3 explains how we designed our study on how selected approaches to
expressing variability in code affect code complexity, Sect. 4 explains how the
study was performed and presents its results. Section 5 discusses the results.
Section 6 relates this study to what others have done. Section 7 concludes the
paper.

2 Variability Management Constructs and Code
Complexity

Variability management is preserved in code mainly through wrapped comments
such as in pure::variants [23]. An example is shown in Listing 1.1. Code fragments
that implement variable features are being marked using annotations manually
or in an automated fashion to allow their tracing and composition [5].

In addition to comments, tags can be used to express code templates as in
the frame technology [17,18]. This requires dedicated transformation tools to be
applied before the actual compilation. Another option to manage variability in
code is to use conditional compilation [6], which also relies on tags (preprocessor
directives). However, these approaches lead to polluting the code with tags [24],
making it more complex.

1 //PV:IFCOND(pv:hasFeature(HazardWarning))

2 static int warning_lights_value; [REMAINING CODE OF HazardWarning...]

3 //PV:ENDCOND

Listing 1.1. Expressing in-code variability in pure::variants (adopted from
pure::systems [23]).

Variability management based on aspect-oriented programming to some
extent resolved evolvability, modularity, and code pollution issues [6], but
remained not fully supported. Furthermore, aspects leave the affected code obliv-
ious of its effects [7]. Variability configuring variables scattered through various
aspects are usually used and mixed with the rest of the business code.

Annotations are usually realized with comments which require additional
preprocessing tools [5]. It’s because of the need for an easy establishment of
annotation-based. [5] software product lines, technology support, and the men-
tioned restrictions. The code fragments that implement variable features are
wrapped by predefined comments that are later processed to allow for their
tracing.



Complexity of In-Code Variability: Emergence of Detachable Decorators 53

Complexity metrics have been successfully applied to measure the difficulty
of code comprehension [11]. However, the comments usually do not contribute
to this process because they are omitted during compilation. Under such cir-
cumstances, evaluating the complexity of these comments and related quality
metrics is impossible. If aspect-oriented programming is used, conditions can be
expressed directly by variables in aspects. In such case, separating and measur-
ing the complexity of particular constructs is challenging because variables that
guard variability conditions according to configuration tend to be mixed with
business functionality.

Configuration expressions are formulas used to decide whether to include or
exclude processed code fragments if conditions are fulfilled. They can contain
additional information associated with an annotated variation point. Analysis of
the impact of their hierarchically expressed version [21] is required for flexible
configuration in a particular context. An example of such an expression is in
Listing 1.4.

1 // @ts-ignore

2 @DecorSRVC.skipLVP({"algoType": "[’

A1’, ’A2’, ’A3’]"}, "import { State

} from ’../store’;") var newA;

3 //import { State } from ’../store’;

Listing 1.2. Annotated import state-
ment by decorators.

1 var EXP_START6 = { "algoType": "[’

A1’, ’A2’, ’A3’]" };

2 import { State } from "../store";

3 var EXP_END6 = { "EXP_END": "--" };

Listing 1.3. Wrapped code of the
import statement.

1 @DecorSRVC.wBlock({"zoom": "true"})

2 public zoom(zoomHTML: any): void {

3 //DO ZOOMING

4 }

Listing 1.4. Annotated method by de-
corators.

1 var EXP_START0 = {"zoom": "true"};

2 public zoom(zoomHTML: any): void {

3 //DO ZOOMING

4 }

5 var EXP_END0 = { "EXP_END": "--" };

Listing 1.5. Wrapped code of the me-
thod.

3 Designing the Study

In the study reported in this paper, the code complexity evaluation of essential
aspects of variability management was performed on adaptation of annotations
in comments—as they are used in pure::variants—, preprocessor directives—as
they are used in conditional compilation—, and tags—as they are used in frame
technology— with the code construct equivalents we proposed. The type and
use of annotations are taken from our method of developing lightweight aspect-
oriented software product lines with automated product derivation [21]. Simi-
larly, we consider the complexity of used configuration expressions and overhead
caused by necessary dead code. We adapted programming language implementa-
tions of decorator pattern to design decorator-bound form which is perceived as



54 J. Perdek and V. Vranić

Fig. 1. Comparative analysis of code constructs complexities of variability management.

the cleanest and most adaptable to us. The possibility of transforming it into dif-
ferent variants enables flexible adaptation of conventional versions of annotations
in source-code comments. This form with unsupported decorators is converted
into a compilable version with supported constructs that can be evaluated and
used further in its less concise structure. In TypeScript this is caused by unavail-
able types of decorators or illegal decorators [28]. Many tools cannot process
the latter, but these constructs remain in the generated abstract syntax trees.
Associated configuration expressions can be optionally excluded to evaluate their
complexity in a particular context and improve them accordingly.

All mentioned challenges with measuring and comparing code complexity
are solved with our framework. Specifically, the code complexity from each file
is transformed into a pair of variability management versions for analysis and
visualized with code itself, evaluated complexities, differences of evaluated com-
plexities, and a statistic test performed to measure if this pair of variability man-
agement versions/cases significantly differ. We propose a process to compare two
annotated files with variability management fully realized in code as shown in
Fig. 1. This process is supported by a framework, which is available on Github,1

along with all scripts, software product line aimed at graphical applications we
developed for evaluation purposes, and resulting artifacts.

3.1 Adapting the Wrappers and Designing the Detachable
Decorators

We designed wrappers equivalent to available variability management con-
structs based on conditional compilation constructs, variability comments as
in pure::variants, and tags as in the frame technology (either pure or supported
by aspect-oriented programming). Our wrappers are a part of the syntax of
the programming language being used for software product line development
(TypeScript in our case). They are active code constructs, i.e., they are not
preprocessor directives, tags, nor comments.

1 https://github.com/jperdek/variabilityMgmtCodeConstructsComplexity.

https://github.com/jperdek/variabilityMgmtCodeConstructsComplexity


Complexity of In-Code Variability: Emergence of Detachable Decorators 55

Wrapping happens for the array of members or statements in the final
abstract syntax tree by putting variability management elements before and
after each selected sequence of members or statements. Additionally, an alter-
native “else” branch can optionally extend the wrapped functionality and help
handle situations where given features are unavailable for particular configura-
tions. Compared to decorators, nested wrappers are usually more difficult to
read.

Contrary to this, we are introducing an adjustment of decorators for vari-
ability management taking into account their limited support to annotate only
function parameters, classes, class methods, and variables [2]. Only these anno-
table variable units at the code level are prioritized in representing variability.
Accordingly, decorators are proposed as a more adaptable form for managing vari-
ability and evaluating complexity. They can be associated with modular source
code structures in a more comprehensible way. Similarly, they affect code exe-
cution only in cases of providing support for dynamic variability management.
They are fully distinguished from the rest of the business logic (its constructs)
by the predefined names, which makes them detachable and independent of vari-
ability management. Compared to decorators, the wrappers is highly applicable,
but cannot be restricted or bound to particular code structures. The difference
can be seen by comparing Listing 1.2 to Listing 1.3 and Listing 1.4 to Listing 1.5.
In all listings, the same business logic is denoted as variability. Specifically, the
import statement occurs in the first pair and the zoom method in the second.
The first member of the pair consists of a decorator beginning with @, and the
second is a conventional wrapper bounded with two initialized variables. List-
ings 1.2 and 1.4 employ a decorator beginning with @, while the other two listings
employ a conventional wrapper bounded with two initialized variables.

Other forms can be based on constructs, such as if statements or for loops,
but their use directly interleaves with code and possibly negatively affects mod-
ularity.

Each of the mentioned forms needs developers to be aware of the product
derivation mechanism to the depth necessary to know its capabilities. For exam-
ple, when code is annotated in wrong places, expressed with an unknown char-
acter sequence, or in the case of templates, it causes additional changes to the
previous development style.

A particular product derivation mechanism usually does not demand preserv-
ing code modularity and extendability when variability needs to be handled at
the code level. Consequently, if recognizable constructs for this mechanism are
not preserved in source code, the mechanism cannot manage and synchronize
how available code constructs are used. Extending their semantics to variability
management increases overall complexity, especially if conditional compilation
is used. In particular, the statements that express variability cannot be easily
semantically distinguished from those statements that express business logic.

To evaluate and compare the complexity of essential aspects of different
approaches to in-code variability management, we designed the following cases:

Case 1. Variability is expressed using detachable decorators



56 J. Perdek and V. Vranić

Case 2. Variability is expressed using detachable decorators, but without vari-
ability configuration expressions

Case 3. Variability is expressed using wrappers
Case 4. Variability is not expressed at all
Case 5. Variability is expressed using detachable decorators, but additional

unwanted dead code constructs are not included for illegal decorators

Each case essentially differs in one or more characteristics, including the
availability and format of configuration expressions as inner members (JSON or
attributes), the way code constructs are used for variability management (wrap-
ping, annotating, or none), the type of used constructs for variability manage-
ment (decorators, variables, or preprocessor directives), and the necessity to use
dead code for visual adaptation of variability management code constructs to
places affected by variability. We did not consider conditional compilation with
associated preprocessor directives because such representation interleaves with
business logic code. We analyzed only configuration expressions in the JSON
format due to the possibility of directly analyzing them as JavaScript/Type-
Script objects, modeling and preserving hierarchic relations with feature models
in code, and using a more concise format over conditions consisting of variables
that usually interleave with business logic code.

Despite the mentioned characteristics, we must also consider available code
constructs in a given programming language, capabilities of code complexity
evaluation tools, and options to position available code constructs near target
places visually. The comparative analysis proposed here was realized in scenarios
each of which compares two of the in-code variability management cases we
designed.

3.2 Hypotheses and the Process

We propose the following hypotheses to evaluate the effect of in-code variability
constructs on code complexity, namely cyclomatic complexity, LOC, and Hal-
stead measures:

Hypothesis 1. Variability expressions extracted from annotations do not signif-
icantly change the complexities of most evaluated metrics.

Hypothesis 2. Changing from wrappers to detachable decorators significantly
improves the complexity of most evaluated complexity metrics.

Hypothesis 3. Removal of all variability constructs from Case 1 does not sig-
nificantly change at least one of the evaluated complexity metrics.

Hypothesis 4. Unwanted dead code constructs significantly change complexity
measured by most evaluated complexity metrics.

Validating Hypothesis 1 involves evaluating the complexity of configuration
expressions represented in JSON format [21] with all mentioned metrics to show
how code complexity is increased in a particular context. Specifically, Case 1
and 2 are compared. We assume that the complexity of configuration expres-
sions significantly affects particular complexity metrics. Minor optimizations to



Complexity of In-Code Variability: Emergence of Detachable Decorators 57

complexity evaluation can be performed by putting JSON into a string so that
it forms one expression and measuring the final effect. This change will comprise
the isolation of variability configuration expressions during measurements from
the rest of the code, especially from business logic.

In future, such expressions could be collected, updated, compared with other
expressions, and possibly optimized in an automated process. Making config-
uration expressions less complex and more comprehensible can help develop-
ers quickly learn relations from automatically generated semantic structural
views [22] of an annotation-based software product line [5] (for example, with our
matrix-based approach to structural and semantic analysis in software product
line evolution [22]).

Configuration expressions influence the code only marginally if these differ-
ences are insignificant. Finally, the measured effect can be used further to design
more optimal expressions to suit various extrafunctional requirements in an auto-
mated way.

Validating Hypothesis 2 involves evaluating the code complexity measures of
the wrappers (based on already used wrappers in the form of comments) with
detachable decorators (modern decorators) for variability management. Some of
their negative effects on code complexity are already known [21]. Firstly, the com-
plexity is increased in two places simultaneously when the content is bounded. In
an abstract syntax tree of a TypeScript program, wrapping a particular element
is possible only by adding neighbors before and after in an array of statements
or members. Secondly, the nested code is hard to read when code-variability con-
structs must be paired. The information about how precisely quality is changed
for different metrics is evaluated by comparing the complexity of wrappers (Case
3) with the one based entirely on detachable decorators (Case 1).

Validating Hypothesis 3 involves evaluating how complex variability con-
structs are in the particular context. In particular, we intend to find at least
one metric that is significantly unaffected by variability management constructs.
Such measurements are achieved by removing all variability constructs (Case
4) and comparing them to the original software product line with variability
management (Case 1 or 3). The corresponding functionality can still be grouped
according to used configuration expressions and assessed separately. Identifica-
tion of additional complexity after introducing variability management is a basis
for distinguishing how complex this functionality is.

Validating Hypothesis 4 involves evaluating the effects of legalizing some of
the currently illegal detachable decorators on the code complexity of variabil-
ity management. In the case of visual relatedness caused by the positioning of
these variability constructs close to variation points, their syntactic representa-
tion is not connected with their visual one. Additionally, their transformation
into another should be considered to evaluate approximated complexity. None of
the available detachable decorators support an ideal form that allows for anno-
tating various one-line code fragments. Even illegal detachable decorators used
to annotate a particular variable require another dead code construct to be posi-
tioned near the target place to cover a variable line of code, such as an import



58 J. Perdek and V. Vranić

Fig. 2. Validating the hypotheses.

(see Listing 1.2) or call of a particular functionality. Transformation into the case
with all supported detachable decorators (Case 1) is required to observe effects
on quality, especially to source code complexity in a given context. Consequently,
dead code constructs affect final complexity and can be preserved during trans-
formation. In addition, the complexity of used detachable decorators can be
approximated from average values of measurements taken previously or simply
the compilable wrappers to which the code is transformed is used. We applied
the latter in our study.

The process of validating the proposed hypotheses is displayed in Fig. 2. The
base/actual case is transformed into a new one, followed by code complexity mea-
surements. Finally, the subtraction of complexities determines the complexity of
extended or different functionality. Firstly, variability configuration expressions
are put into adapted decorator or wrapper code constructs to cover various vari-
able code fragments. Secondly, project files are loaded and transformed into each
pair of particular cases. Thirdly, the complexity is evaluated for each member
with their difference in the separate measurements. Transformed scripts used to
measure complexity are optionally persisted into files. Finally, data are analyzed
according to chosen hypotheses and possible use cases.

4 Performing the Study

New code constructs in a particular programming language or their visual posi-
tioning in the code allow for variability management constructs to appear cleaner.
For example, decorators in TypeScript can be customized with their own easily
recognizable name and used to automatically transform these recognized marked
points (variation points) into wrappers or even any evaluable forms. Additionally,
they can be transformed into constructs that are impossible to distinguish auto-
matically or where this process is error-prone. Their flexibility can be compared
according to the code complexity of such variability markers or even associated
configuration expressions used in code under a given context, such as annotating
certain classes or files in a software product line as variable.



Complexity of In-Code Variability: Emergence of Detachable Decorators 59

Fig. 3. Pair comparison of evaluated particular complexity metric on variability anno-
tated files among all introduced cases: Part 1

Considering them as code constructs, their effect on the resulting code com-
plexity can be evaluated similarly to that of a variability-unaffected code. In our
study, we omit variability-unaffected files and all their code and instead focused
on standalone files, their imports, classes, and various types of methods. Specifi-
cally, focus on files as standalone units is essential for considering the variability
of import statements. In case merging all files together will cause not correct eval-
uation of overall complexity. Thanks to the TyphonJS-ESComplex service [15],
source code complexity metrics are evaluated, considering decorator complexities.
Supported ones are cyclomatic complexity (cyclomatic number and cyclomatic
density), Halstead measures (Bugs, Difficulty, Effort, Length, Time, Vocabulary,
Volume, information about distinct identifiers such as Operands and Operators),
and number of lines of code (LOC). Maintainability is also evaluated for some
code structures, such as classes.



60 J. Perdek and V. Vranić

Fig. 4. Pair comparison of evaluated particular complexity metric on variability anno-
tated files among all introduced cases: Part 2

As has been mentioned in Sect. 3, the study was performed on a software
product line aimed at graphical applications, which we developed for evaluation
purposes.

We iterated with the design of annotations (detachable decorators) with avail-
able decorators in TypeScript to cover all variable parts more concisely. One-line
declarations, calls, imports, and other code fragments showed to be problematic
to decorate. Most of these code fragments cannot be wrapped inside functions.
Additionally, it’s not feasible to study complexity due to unavailable tools sup-
porting illegal decorators in TypeScript. Despite this, we used illegal experi-
mental decorators that annotated newly declared variables and put them under
one-line variable code fragment that needed to be covered. In the next step,
they are transformed into a wrappers that can be compiled, especially for the
evaluation phase. For some cases, such as in Angular, the compiler can ignore



Complexity of In-Code Variability: Emergence of Detachable Decorators 61

the illegal use of decorator with @ts-ignore, thus allowing native development of
applications. The code is still slightly polluted with necessary dead code.

For each target project file, we created a hierarchic structure from metrics
being assessed with the possibility of applying various operations, such as a dif-
ference between two such structures. Finally, results are divided into files, classes,
their methods, and averages when many classes or methods are inside of given
files. Due to the domain orientation/solution design, the results strongly depend
on the given variability markings and the technology and frameworks used. A
different domain or solution design can require a different number of annotations
that can vary in their various types. For this purpose, the analysis is applied to
files of software product line rather than on their merged version and then sta-
tistically evaluated. In addition, the resulting complexities are divided by the
number of decorators used. Consequently, the number and complexity of eval-
uated code constructs should not significantly differ from other associated and
similarly analyzed files after transformation is applied into a different form. Still,
the more use cases are implemented, the more complex variability expressions
and more dense annotations are, especially for contradicting features. Accord-
ingly, the resulting complexities are also affected. These initial conditions do not
prevent observing variability management’s additive effect on code complexity.
Additionally, various code-based variability annotations are compared based on
their complexities and evaluated to see if unsupported illegal decorators or their
future versions will improve complexity and quality.

Different complexity metrics extracted from the code transformed according
to proposed cases are quantitative, except a list of used identifiers and operators
in the Halstead measures. Additionally, performed normality tests do not confirm
normality; thus, a test independent of probability distribution is chosen. After
getting information about possible correlations, all proposed metrics were shown
to be dependent. It also holds for measurements that compare the code in a
particular case (sample) and its transformed/extended version (opposite sample).
Thus, pair testing is used. Whether compared complexity measures significantly
differ after and before applying the particular case of variability management
annotations helps to find unaffected measures or those with marginal values and
is verified with the paired nonparametric Wilcoxon test. If the significance level
or p-value is below the given threshold of 0.05, the zero hypothesis is rejected,
and the samples are significantly different. Another option is to use a Kruskal-
Wallis test, which uses the Nemenyi method to determine if a change is also
significant.

In this experiment, over 76 variability annotated files that contain at least
one variability annotation are tested. Additionally, the 84 classes stored in the
mentioned files were used to test their in-class complexities, but only 64 were
unique. The differences between each file/member pair cases (in each vertical
line of the graph) are visualized in Figs. 3 and 4.



62 J. Perdek and V. Vranić

4.1 Code Complexity of Variability Configuration Expressions

Our primary focus was to evaluate whether changes to different complexity mea-
sures are significant after inserting variability configuration expressions. Quanti-
tative results also help optionally optimize used constructs or recommend their
use. The solution with configuration expressions seems more complex than the
version without them. Halstead measures, such as Bugs and Length, always
increased after introducing configuration expressions. Halstead’s Vocabulary
and Identifiers, such as operands and operators, always increased or remained
unchanged. They remained unchanged due to using empty JSON in cases where
the whole file should be copied according to our variability management mecha-
nism policy. The logical LOC has a similar tendency. The cyclomatic complexity
and the number of physical LOC remained unchanged. Halstead’s Difficulty,
Effort, and Time are decreased or increased for some measures.

Table 1. Code complexity for Case 1 and 2 compared.

Name of compared metric Corr. W p-value 95% CI Est. p>0.05

Cyclomatic Complexity 1.0000 0 1.0000E+00 NaN, NaN NaN TRUE

Cyclomatic Density 0.9897 0 2.1335E-04 −2.12, −0.7690 −1.4110 FALSE

Halstead’s Bugs 0.9989 2926 1.9956E-14 0.002, 0.005 0.002 FALSE

Halstead’s Difficulty 0.9976 294 3.8958E-02 0.07, 0.59 0.3265 FALSE

Halstead’s Effort 0.9992 2652 7.5836E-10 57, 103 79.7495 FALSE

Halstead’s Length 0.9988 2926 1.2543E-15 1.00, 2.50 1.0001 FALSE

Halstead’s Time 0.9992 2652 7.5836E-10 3.19, 5.74 4.4308 FALSE

Halstead’s Vocabulary 0.9990 435 1.9687E-06 1.50, 3.50 2.0000 FALSE

Halstead’s Volume 0.9903 2926 3.6708E-14 35.18, 45.23 38.6940 FALSE

Halstead’s Id Dist. Operands 0.9984 171 1.3795E-04 2.00, 4.00 3.5001 FALSE

Halstead’s Id Ttl Operators 0.9981 171 1.5794E-04 2.00, 13.50 9.0000 FALSE

Halstead’s Id Dist. Operators 0.9993 66 1.0893E-03 NaN, NaN 1.0000 FALSE

Halstead’s Id Ttl Operators 0.9982 2926 1.2460E-15 1.00, 1.50 1.0001 FALSE

LOC Physical 1.0000 0 NaN NaN, NaN NaN TRUE

LOC Logical 0.9978 171 1.5853E-04 1.00, 7.00 5.0000 FALSE

We tested the significance of these changes in the paired test on a significance
level of 0.05. The results are shown in Table 1. Only the cyclomatic complexity
and number of logical LOC do not deny Hypothesis 0, thus confirming that these
measures are not significantly different except the remaining ones. Accordingly,
our Hypothesis 1 is rejected. Evaluating complexities from classes showed that
Halstead’s Difficulty is near the boundary of being significantly different and can
be improved by removing redundant classes used only to annotate and preserve
given files during variability handling. Class maintainability is also evaluated
and remains without significant difference in this case.



Complexity of In-Code Variability: Emergence of Detachable Decorators 63

4.2 Wrappers Vs. Detachable Decorators

The similarly applied paired Wilcoxon test on Case 3 and 1 pair proved that the
wrappers and detachable decorators significantly differ in all complexity met-
rics except the cyclomatic complexity. The remaining code fragments are more
complex for wrappers by reaching higher values for some Halstead complexity
measures (Bugs, Length, Operator and Operand identifiers, Volume, and Vocab-
ulary, except one sample). LOC (physical and logical) followed this tendency
despite a few similar values. Not always, but complexity is high for other Hal-
stead measures (Difficulty, Effort, and Time). Declaring new variables is affected
by the complexity of the whole file and results in different complexities. Hal-
stead’s Bugs, Length, and Volume are mainly increased when their content is
wrapped inside a method and then when classes are wrapped. These preferences
are for Vocabulary usually swapped. The simpler the wrapped code is, the lower
the differences are. Only cyclomatic density is decreased.

Table 2. Code complexity for Case 3 and 1 compared.

Name of compared metric Corr. W p-value 95% CI Est. p > 0.05

Cyclomatic Complexity 1.0000 0 1.0000E+00 NaN, NaN NaN TRUE

Cyclomatic Density 0.8226 0 3.5776E-13 −4.1959, −2.28 −3.02 FALSE

Halstead’s Bugs 0.9997 2556 2.4526E-13 0.01, 0.02 0.0141 FALSE

Halstead’s Difficulty 0.9971 2237 5.9298E-09 0.60, 0.80 0.7390 FALSE

Halstead’s Effort 0.9988 2386 2.2106E-10 503.04, 1493.10 841.6983 FALSE

Halstead’s Length 0.9997 2556 9.3382E-17 6.00, 6.00 6.0000 FALSE

Halstead’s Time 0.9988 2386 2.2106E-10 27.95, 82.95 46.7609 FALSE

Halstead’s Vocabulary 0.9994 2484 4.2116E-14 3.00, 3.45 3.0000 FALSE

Halstead’s Volume 0.9997 2556 2.4761E-13 39.32, 45.96 42.2363 FALSE

Halstead’s Id Dist. Operands 0.9996 2415 2.5713E-16 2.00, 2.00 2.0000 FALSE

Halstead’s Id Ttl Operands 0.9999 2556 9.3382E-17 2.00, 2.00 2.0000 FALSE

Halstead’s Id Dist. Operators 0.9886 2030 2.1410E-12 1.00, 1.50 1.0000 FALSE

Halstead’s Id Ttl Operators 0.9999 2485 9.8502E-17 4.00, 4.00 4.0000 FALSE

LOC Physical 0.9998 2556 2.1563E-16 1.00, 1.00 1.0000 FALSE

LOC Logical 0.9999 2485 9.8502E-17 2.00, 2.00 2.0000 FALSE

The Wilcoxon test confirmed the significance of these differences in all cases
except the cyclomatic complexity. In conclusion, Hypothesis 2 cannot be rejected.
Consequentially, their significance level is too far from the threshold of 0.05,
which makes the detachable decorators (Case 1) preferable over the wrappers
(Case 3). Additionally, the full support of decorators for one-line constructs will
probably improve results when they are used during comparison with wrappers
and deepen the differences between both versions. The cyclomatic complexity is
not affected by any change inside a given file caused by the variability manage-
ment’s independence. Results are displayed in Table 2.



64 J. Perdek and V. Vranić

4.3 Significance of Variability Management Code Complexity

Hypothesis 3 is proposed to test the significance of the complexity of various vari-
ability constructs from Case 1 to each overall business code complexity (Case 4)
for each file. The improvements are presented in Table 3 and showed that detach-
able decorators strongly affect the majority of complexity measures except for
cyclomatic complexity (no change) and Halstead’s Difficulty. Some complexity
metrics contribute in both directions, especially some Halstead measures (Diffi-
culty, Effort, and Time) measured for each analyzed file. Cyclomatic density is
the only one that decreased after the variable code fragments were removed.

Table 3. Code complexity for Case 1 and 4 compared.

Name of compared metric Corr. W p-value 95% CI Est. p > 0.05

Cyclomatic Complexity 1.0000 0 NaN NaN, NaN NaN TRUE

Cyclomatic Density 0.9264 0 3.6200E-14 −4.63, −2.05) −2.9825 FALSE

Halstead’s Bugs 0.9900 2926 3.6200E-14 0.01, 0.02 0.0130 FALSE

Halstead’s Difficulty 0.9921 1489 8.9495E-01 −0.19, 0.52 0.0280 TRUE

Halstead’s Effort 0.9920 2486 1.2000E-07 123.31, 199.05 155.8794 FALSE

Halstead’s Length 0.9885 2926 1.2500E-15 5.00, 6.50 5.0001 FALSE

Halstead’s Time 0.9920 2486 1.2000E-07 6.85, 11.06 8.6572 FALSE

Halstead’s Vocabulary 0.9880 2926 1.2900E-14 3.00, 3.50 3.0000 FALSE

Halstead’s Volume 0.9903 2926 3.6700E-14 35.18, 45.23 38.6939 FALSE

Halstead’s Id Dist. Operands 0.9855 2926 1.2500E-15 2.00, 3.00 2.0001 FALSE

Halstead’s Id Ttl Operands 0.9891 2926 1.2500E-15 2.00, 3.00 2.0001 FALSE

Halstead’s Id Dist. Operators 0.9928 406 2.6600E-06 1.50, 2.00 1.9999 FALSE

Halstead’s Id Ttl Operators 0.9863 2926 1.2500E-15 3.00, 3.50 3.0001 FALSE

LOC Physical 0.9904 2926 1.0300E-16 2.00, 2.00 2.0000 FALSE

LOC Logical 0.9734 2926 1.2500E-15 1.00, 1.50 1.0001 FALSE

The wrapped code significantly affects (from half to more than twice for
the one annotated code fragment, but more than twice for the standalone file)
Halstead’s Bugs, Length, Vocabulary, Operator and Operand identifiers, and
Volume. Both the logical and physical number of LOCs are minimally doubled.
In the case of Halstead’s Bugs, the lowest contributions are associated with state-
ments only used to support variability, as mentioned before. Consequently, using
supporting code for variability management can be limited, and illegal detach-
able decorators seem preferable to wrappers. The most affected are modules
that should be configured differently to reduce additional variables, “if”, “than”,
“else” constructs, and necessarily associated import statements. The last one is
the most important to handle because of the necessity to use wrappers; other-
wise, they must be held at least with illegal detachable decorators. Their nature
is thus not intended directly to handle variability.



Complexity of In-Code Variability: Emergence of Detachable Decorators 65

Additionally, the removal of files with the most wrappers decreases most
Halstead measures. The test on significance between the state before and after
applying variability management was performed again, and results are displayed
in Table 4. The significance level improved in most cases by about a hundredfold
(expressed in bold italics) and tenfold (bold) for the remaining ones, except
for cyclomatic complexity and physical LOC. This test showed how reducing
wrapper parts in cases such as module and routing configuration or services
with additional code handling in our software product line aimed at graphical
applications can help reduce the code complexity of used variability management
constructs to mark variable code. Still, the change is too far from the threshold of
0.05. In summary, using variability management constructs significantly affects
most used complexity measures and cannot decrease them by any available code
construct below the significance threshold. Hypothesis 3 is not rejected, thanks
to Halstead’s Difficulty. Still, less complex variability-aware code with higher
quality can be produced in this restricted way.

4.4 The Effect of Dead Code Constructs on Code Complexity

The next step is to discover how redundant dead code affects the analyzed com-
plexity measures in order to validate Hypothesis 4. This code is used in helper
functionality based on illegal decorators in TypeScript that mediate visually
positioning variability annotations next to the variable code fragments as an
alternative to wrapper constructs. The solution required using these constructs
in only 9 out of all 76 files. Subtracting each of the complexity measures of Case 5

Table 4. Code complexity for Case 1 and 4 compared without most of the files with
wrappers.

Name of compared metric Corr. W p-value 95% CI Est. p > 0.05

Cyclomatic Complexity 1.0000 0 NaN NaN, NaN NaN TRUE

Cyclomatic Density 0.9277 0 1.6427E-12 −4.58, −1.81 −2.7695 FALSE

Halstead’s Bugs 0.9969 2211 1.6442E-12 0.01, 0.01 0.0120 FALSE

Halstead’s Difficulty 0.9948 886 1.6171E-01 −0.28, 0.11 −0.1545 TRUE

Halstead’s Effort 0.9979 1787 1.3588E-05 102.09, 152.93 126.98 FALSE

Halstead’s Length 0.9965 2211 2.5043E-14 5.00, 5.00 5.0000 FALSE

Halstead’s Time 0.9979 1787 1.3588E-05 5.67, 8.50 7.0545 FALSE

Halstead’s Vocabulary 0.9963 2211 4.1183E-13 2.50, 3.50 2.9999 FALSE

Halstead’s Volume 0.9969 2211 1.6743E-12 32.77, 38.41 35.4739 FALSE

Halstead’s Id Dist. Operands 0.9953 2211 2.5043E-14 2.00, 2.00 2.0001 FALSE

Halstead’s Id. Ttl Operands 0.9954 2211 2.5043E-14 2.00, 2.00 2.0001 FALSE

Halstead’s Id. Dist. Operators 0.9958 171 1.4868E-04 2.00, 3.00 2.0000 FALSE

Halstead’s Id. Ttl Operators 0.9953 2211 2.5043E-14 3.00, 3.00 3.0001 FALSE

LOC Physical 0.9980 2211 7.4931E-16 2.00, 2.00 2.0000 FALSE

LOC Logical 0.9958 2211 2.5043E-14 1.00, 1.00 1.0001 FALSE



66 J. Perdek and V. Vranić

with unwanted helper code from the case without them measures their overhead.
Complexity is again increased in most Halstead metrics (Bugs, Effort, Length,
Time, Vocabulary, and Volume) and LOC metrics (logical and physical). Only
cyclomatic density decreased in all cases. The results of the paired Wilcoxon test
that tests the significance of the change for most of the complexity metrics are
shown in Table 5. Hypothesis 4 cannot be rejected. Still, compared with previous
measurements, the significance level is not far from the threshold of 0.05 for most
evaluated complexity metrics.

Table 5. Code complexity for Case 5 and 1 compared.

Name of compared metric Corr. W p-value 95% CI Est. p > 0.05

Cyclomatic Complexity 1.0000 0 1.0000 NaN, NaN NaN TRUE

Cyclomatic Density 1.0000 0 0.0092 −1.11, −0.25 −0.495 FALSE

Halstead’s Bugs 0.9998 45 0.0092 0.01, 0.04 0.0205 FALSE

Halstead’s Difficulty 0.9999 40 0.0440 0.01, 0.53 0.2210 FALSE

Halstead’s Effort 0.9996 45 0.0092 551.81, 2876.1 1199 FALSE

Halstead’s Length 0.9998 45 0.0091 4.00, 16.00 9.0001 FALSE

Halstead’s Time 0.9996 45 0.0092 30.66, 159.78 66.603 FALSE

Halstead’s Vocabulary 0.9999 45 0.0034 NaN, NaN 1.0000 FALSE

Halstead’s Volume 0.9998 45 0.0092 32.04, 108.08 62.861 FALSE

Halstead’s Id Dist. Operands 0.9999 45 0.0034 NaN, NaN 1.0000 FALSE

Halstead’s Id Ttl Operands 0.9996 45 0.0091 2.00, 8.00 4.5000 FALSE

Halstead’s Id Dist. Operator 1.0000 0 1.0000 NaN, NaN NaN TRUE

Halstead’s Id Ttl Operators 0.9999 45 0.0091 2.00, 8.00 4.5000 FALSE

LOC Physical 0.9990 45 0.0092 2.50, 12.00 5.5000 FALSE

LOC Logical 0.9996 45 0.0091 2.00, 8.00 4.5000 FALSE

5 Discussion

The experiments depend on variability management policies, which prescribe
how information about variability is marked. Our software product line aimed
at graphical applications is based on our method of developing lightweight aspect-
oriented software product lines with automated product derivation and its poli-
cies [21].

Additionally, the values of specific metrics can differ under different variabil-
ity configurations according to the number and complexity of variable features.
Only five features and five subfeatures were implemented, along with one annota-
tion per file for the initial configuration of variability management, which proved
significantly different from the original business code. Modern software product



Complexity of In-Code Variability: Emergence of Detachable Decorators 67

lines count from tens to thousands of features [13], where many are scattered
across multiple files and commits during evolution [10]. Consequently, this intro-
duces numerous variability constructs with more complex configuration expres-
sions. Managed modules in the Angular framework require annotating various
fragments. On the contrary, after removing such cases, the result of the pre-
sented test is still closely behind the threshold to reject a zero hypothesis and
proves a significant difference. Still, the complexities can be improved even with
minor changes. Some Halstead metrics can lead to unclear properties for small or
middle programs, possibly affecting their interpretation [29]. Consequently, the
measured values should be verified with user testing, especially for variability
management. Another option is to use them according to updated versions on a
large scale.

Additional metrics should be introduced to fully observe the comprehension
of particular variability management constructs, especially expressions by devel-
opers. Variability expressions are usually mapped to features positioned in hier-
archic feature models or belonging to the chains of dependencies amongst fea-
tures. These relations are not considered and pose the problem of constructional
validity.

The detachable decorators even empirically overcomes the wrappers when
the ending part should be necessarily included, the nesting of wrappers is error-
prone and hard to read, and even they cannot be directly bound to a particular
entity in code. All LOC and Halstead metrics agreed for conclusion validity,
but complications emerged with cyclomatic complexity. Specifically, conditional
reasoning is affected by variability conditions, but they do not affect cyclomatic
complexity. This measure failed in all introduced cases due to a misunderstanding
of the role of variability management constructs.

We observed that the complexity of detachable decorators as constructs
bound to other code constructs depends on the complexity of these constructs.
Consequently, we found the problem of internal validity because our constructs
are easily detachable without any side effects and thus not bound to business
logic with its flows. On the contrary, the more modular the annotated business
entity is, the better these constructs are for modularization. Specifically, code-
complexity metrics are unaware of variability management and pose the problem
of inner validity. New metrics should be introduced for this purpose.

The problem of generalizing outcomes for constructs belonging to other pro-
gramming languages or computation models under specific conditions falls into
external validity. For example, transitions of finite automaton or state machine
can be aggregated or grouped. Still, it is useless to annotate them individually
if simulators in this process do not support advanced data structures. Unknown
relations to variability or immature technologies cause these problems.

6 Related Work

The most similar expressions to configuration expressions are presence condi-
tions [4]. They manage the presence of particular functionality in various mod-
els according to the configuration of features [4], usually through feature models.



68 J. Perdek and V. Vranić

The same operators (and/or) are used with configuration in variability manage-
ment on various models. Their known drawback is the ability to manage the
presence only of available functionality, negative variability [24]. Compared with
our JSON [21] configuration expressions instantiated as objects in JavaScript/-
TypeScript, a presence condition cannot easily express hierarchic information
and even hold more information, such as additional strings or values assigned
during development. If applied at the code level, the variables used in these
presence conditions usually interleave with the code [21]. To the best of our
knowledge, their code complexity was never assessed nor used to optimize them.

Many authors focused on short programs [12,19,20] possibly because of the
lack of an automated support for their studies. However, we developed such
support, which made possible for our study to be of a nontrivial size.

Athar Khan et al. compare three programming languages according to mea-
sured metrics on the implementation of a sorting algorithm [12]. LOC, cyclo-
matic complexity, and the Halstead measures were used to determine the most
complex implementation and implications for testing time. Exceptionally for the
Halstead difficulty, the different most complex candidate programming language
was determined [12].

Peitek et al. observed the relation between metrics and brain activity [20].
The fMRI study [20] found only a small correlation of the LOC and Halstead
measures with the response time and a medium correlation with the correctness
of the resulting program outputs. The medium correlation also held for brain
activation and deactivation, while cyclomatic complexity is not correlated in any
case. The reason for using the Halstead measures in this study is given by the
increase in cognitive processing demands due to the number of symbols [25].
Similarly, cyclomatic complexity was used to analyze control flows due to their
effects on rule-guided conditional reasoning [14,16]. Our study could be extended
to evaluate the level of cognitive processing and conditional reasoning in different
approaches to variability management.

Sehgal and Mehrotra [26] used Halstead’s volume to predict faults among
system components in the reliability and mean time between failures metric,
which considers usage time and the amount of code with operators and operands.
Graves et al. [8] showed how complexity metrics correlate with each other in a
similar way our study indicated.

7 Conclusions and Future Work

This paper presents a study on how selected approaches to expressing variabil-
ity in code affect code complexity. To evaluate and compare the complexity
of essential aspects of different approaches to in-code variability management,
we designed five prominent cases of how variability is expressed in code: using
decorators, using decorators without variability configuration expressions, using
wrappers, using decorators with additional unwanted dead code constructs not
being included for illegal decorators, and with no variability expressed in code
at all. To measure code complexity in these cases, we used a framework for eval-
uating TypeScript code that we implemented in Java. Our framework is capable



Complexity of In-Code Variability: Emergence of Detachable Decorators 69

of assessing 15 metrics, comprising several variants of the LOC, Halstead, cyclo-
matic complexity, and cyclomatic density metrics. Decorators are detachable
because they are decorating a particular code construct with a predefined nam-
ing convention and have no effects on code. The study was conducted on a soft-
ware product line aimed at graphical applications we developed for evaluation
purposes.

We came to a range of interesting findings. Detachable decorators proved
to be significantly less complex than other ways of expressing variability in
code, especially than the in-code version of wrappers. Except for dynamic self-
adaptability, annotations in comments (as in pure::variants) do not directly affect
the complexity of business functionality. Similarly, decorators can be entirely
separated from business logic and their names are easily adaptable to particu-
lar domains or extensions. They are even applicable to incorporating changes
dynamically on the fly and their application is forced to improve modularity.
Configuration expressions are put inside their arguments more concisely in the
JSON format. On the contrary, illegal decorators are still necessary for configura-
tion purposes or exceptional cases, rather than traditional wrappers to annotate
import statements. Additionally, introducing redundant code for these purposes
significantly affects complexity measures. However, even decorators proved sig-
nificantly more complex for various metrics than not having variability expressed
in code at all.

The configuration expressions used for their hierarchic nature to concisely
express feature models significantly increase most code complexity measures,
especially the Halstead ones. Consequently, optimization to more comprehensive
versions and even to make easier creating autonomous processes of optimizing
configuration expressions and evolving software product lines are required to con-
figure, simulate, and evaluate effects on the extensive number of features. In our
future work, the results can help design a tool to visualize only certain views of
variability on the fly and update particular configuration expressions accordingly.
Additionally, we want to automatically optimize configuration expressions and
evaluate which hierarchically expressed configuration made according to feature
model fits the best.

Acknowledgements. The first author was supported by the STU Grant Scheme for
Support of Young Researchers.

References

1. Blair, L., Pang, J.: Aspect-oriented solutions to feature interaction concerns using
AspectJ, p. 17 (2003)

2. Cardoso, J.: How to use decorators in TypeScript. digitalocean.com (2021). https://
www.digitalocean.com/community/tutorials/how-to-use-decorators-in-typescript

3. Chen, L., Ali Babar, M., Ali, N.: Variability management in software product lines:
a systematic review. In: Proceedings of the 13th International Software Product
Line Conference, pp. 81–90 (2009)

https://www.digitalocean.com/community/tutorials/how-to-use-decorators-in-typescript
https://www.digitalocean.com/community/tutorials/how-to-use-decorators-in-typescript


70 J. Perdek and V. Vranić

4. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005). https://doi.org/10.
1007/11561347 28

5. Fenske, W., Thüm, T., Saake, G.: A taxonomy of software product line reengineer-
ing. pp. 1–8. ACM, Sophia Antipolis France (2014)

6. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M.: Kulesza: evolving software
product lines with aspects: an empirical study on design stability. In: Proceedings
of 30th International Conference on Software Engineering, ICSE’08. ACM (2008)

7. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and
obliviousness (2001)

8. Graves, T., Karr, A., Marron, J., Siy, H.: Predicting fault incidence using software
change history. IEEE Trans. Software Eng. 26(7), 653–661 (2000)

9. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: mapping features to mod-
els. In: In: Proceedings of 30th International Conference on Software Engineering.
ICSE 2008, Leipzig, Germany, pp. 943–944 (2008)

10. Hinterreiter, D., Grünbacher, P., Prähofer, H.: Visualizing feature-level evolution
in product lines: a research preview. In: Madhavji, N., Pasquale, L., Ferrari, A.,
Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 300–306. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-44429-7 21

11. Kasto, N., Whalley, J.: Measuring the difficulty of code comprehension tasks using
software metrics 136 (2013)

12. Khan, A.A., Mahmood, A., Amralla, S.M., Mirza, T.H.: Comparison of software
complexity metrics. Int. J. Comput. 04, 19–26 (2016)

13. Khan, F., Musa, S., Tsaramirsis, G., Buhari, S.: SPL features quantification and
selection based on multiple multi-level objectives. Appl. Sci. 9, 18 (2019)

14. Kulakova, E., Aichhorn, M., Schurz, M., Kronbichler, M., Perner, J.: Processing
counterfactual and hypothetical conditionals: an fMRI investigation. Neuroimage
72, 265–271 (2013)

15. Leahy, M.: TyphonJS-ESComplex (2018). https://www.npmjs.com/package/
typhonjs-escomplex

16. Liu, J., Zhang, M., Jou, J., Wu, X., Li, W., Qiu, J.: Neural bases of falsification in
conditional proposition testing: evidence from an fMRI study. Int. J. Psychophysiol.
85(2), 249–256 (2012)

17. Loughran, N., Rashid, A.: Framed aspects: supporting variability and configurabil-
ity for AOP. In: Bosch, J., Krueger, C. (eds.) ICSR 2004. LNCS, vol. 3107, pp. 127–
140. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27799-6 11

18. Loughran, N., Rashid, A., Zhang, W., Jarzabek, S.: Supporting product line evo-
lution with framed aspects, p. 5 (2004)

19. Muriana, B., Paul Onuh, O.: Comparison of software complexity of search algo-
rithm using code based complexity metrics. Int. J. Eng. Appl. Sci. Technol. 6(5),
24–29 (2021)

20. Peitek, N., Apel, S., Parnin, C., Brechmann, A., Siegmund, J.: Program compre-
hension and code complexity metrics: An fMRI study. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering. ICSE 2021, Madrid, ES, pp.
524–536. IEEE (2021)

21. Perdek, J., Vranić, V.: Lightweight aspect-oriented software product lines with
automated product derivation. In: Abelló, A., et al. (eds.) ADBIS 2023. CCIS,
vol. 1850, pp. 499–510. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
42941-5 43

https://doi.org/10.1007/11561347_28
https://doi.org/10.1007/11561347_28
https://doi.org/10.1007/978-3-030-44429-7_21
https://www.npmjs.com/package/typhonjs-escomplex
https://www.npmjs.com/package/typhonjs-escomplex
https://doi.org/10.1007/978-3-540-27799-6_11
https://doi.org/10.1007/978-3-031-42941-5_43
https://doi.org/10.1007/978-3-031-42941-5_43


Complexity of In-Code Variability: Emergence of Detachable Decorators 71

22. Perdek, J., Vranić, V.: Matrix based approach for structural and semantic analysis
supporting software product line evolution. In: Proceedings of the Tenth Work-
shop on Software Quality Analysis, Monitoring, Improvement, and Applications,
SQAMIA 2023. CEUR Workshop Proceedings, Bratislava (2023)

23. pure::systems: PLE & code-managing variability in source code (2020). https://
youtu.be/RlUYjWhJFkM

24. Rashid, A., Royer, J.C., Rummler, A. (eds.): Aspect-Oriented, Model-Driven Soft-
ware Product Lines: The AMPLE Way (2011)

25. Schuster, S., Hawelka, S., Himmelstoss, N.A., Richlan, F., Hutzler, F.: The neu-
ral correlates of word position and lexical predictability during sentence reading:
evidence from fixation-related fMRI. Lang. Cogn. Neurosci. 35(5), 613–624 (2020)

26. Sehgal, R., Mehrotra, D.: Predicting faults before testing phase using Halstead’s
metrics. Int. J. Software Eng. Appl. 9, 135–142 (2015)

27. Varshosaz, M., Al-Hajjaji, M., Thüm, T., Runge, T., Mousavi, M.R., Schaefer, I.:
A classification of product sampling for software product lines. In: Proceedings of
the 22nd International Systems and Software Product Line Conference - Volume 1,
New York, NY, USA, pp. 1–13. SPLC ’18, Association for Computing Machinery
(2018)

28. Woods, J.: Possible ES6 extensions (2021),.https://github.com/tc39/proposal-
decorators/blob/master/EXTENSIONS.md

29. Zuse, H.: Resolving the mysteries of the halstead measures (2005)

https://youtu.be/RlUYjWhJFkM
https://youtu.be/RlUYjWhJFkM
https://github.com/tc39/proposal-decorators/blob/master/EXTENSIONS.md
https://github.com/tc39/proposal-decorators/blob/master/EXTENSIONS.md

	Complexity of In-Code Variability: Emergence of Detachable Decorators
	1 Introduction
	2 Variability Management Constructs and Code Complexity
	3 Designing the Study
	3.1 Adapting the Wrappers and Designing the Detachable Decorators
	3.2 Hypotheses and the Process

	4 Performing the Study
	4.1 Code Complexity of Variability Configuration Expressions
	4.2 Wrappers Vs. Detachable Decorators
	4.3 Significance of Variability Management Code Complexity
	4.4 The Effect of Dead Code Constructs on Code Complexity

	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References


