IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 26 December 2024, accepted 4 February 2025, date of publication 7 February 2025, date of current version 12 February 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3539868

== RESEARCH ARTICLE

Fully Automated Software Product Line Evolution
With Diverse Artifacts

JAKUB PERDEK ! AND VALENTINO VRANIC2

Unstitute of Informatics, Information Systems, and Software Engineering, Faculty of Informatics and Information Technologies, Slovak University of Technology
in Bratislava, 812 43 Bratislava, Slovakia
2Faculty of Informatics, Pan-European University, 820 09 Bratislava, Slovakia

Corresponding author: Jakub Perdek (jakub.perdek @stuba.sk)
This work was supported by the Slovak Research and Development Agency under Grant APVV-23-0408.

ABSTRACT Existing approaches in software product lines usually neglect knowledge modeling and
simulation of the interaction between features capable of bringing dynamism and automation. Consequently,
these solutions miss opportunities to resolve associated and emerging problems, including defect detection
or quality assurance, which can be solved by effectively extracting and utilizing knowledge from data based
on the differences between variants. We bring capabilities to seize them in introducing a fully automated
and minimalistic approach to software product line evolution that strictly focuses on handling variability
at low-level code fragments. It incorporates the autonomous modeling of emerging knowledge across
preconfigured simulations. Specifically, fully automated knowledge-driven software product line evolution
provides various views on an existing software product line, its variants, and their evolution through semantic
and structural information accompanied by the time and order of the performed changes. We initially
developed our approach for software product line evolution, followed by its successful application to
the evolution of fractal scripts. We present it accordingly. Fractal products are much simpler because an
application state does not span out of recursive behavior, making it manageable within the drawing. Each
change is propagated into repetitive phases, causing the visual performance of the implemented feature to be
infinitely detailed. Even minor changes in low code fragments tend to manifest as user-visible features owing
to recursive behavior, allowing one to massively introduce new features and/or configure existing features
and manage variability observable as infinitely detailed shapes. Future applications propose automated
observation of more comprehensive in-code representation of feature trees.

INDEX TERMS Aspect-oriented, configuration expressions, knowledge-driven, software product line
evolution, variability modeling.

I. INTRODUCTION

Knowledge modeling, along with the simulation of interac-
tions between features, is neglected in most software product
lines [1]. Consequently, such solutions miss opportunities to
resolve associated and emerging problems, including defect
detection or quality assurance, by handling variability in
an automated fashion. Knowledge modeling helps organize
information from software families that open space to
manage reuse among various platforms, each belonging
to an independent software product line as in a known

The associate editor coordinating the review of this manuscript and

approving it for publication was Xueqin Jiang

case in the automobile industry [2]. Additionally, handling
feature interactions can benefit from the proposed variety of
simulations. It can guide the dynamic reconfiguration of a
software product line [3], [4] and its testing in an autonomous
fashion. Accordingly, they are important in adaptive and
competitive software systems, especially software product
lines [5], [6], which must be adapted in a particular context
and even compete to provide better outcomes.

Many works [7], [8] mined artifacts from repositories
beyond source code, including logs, documentation, images,
communication, and even built system files. These sources
are usually widespread, which gives them a non-negligible
role [9]. In contrast, documentation should describe the

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 13, 2025

For more information, see https://creativecommons.org/licenses/by/4.0/

27325

https://orcid.org/0009-0003-3616-4373
https://orcid.org/0000-0002-0414-4349

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

functionality of a particular code fragment, which usually
covers its dynamic nature. Additionally, it is impossible
to cover all aspects of automatically expanding code in a
software family with artifacts that are typically provided
manually. Consequently, a representation directly originating
from a code that can abstract from some details to represent
aspects of products, primarily in the form of perceived value
for the user, is required. We perceive to incorporate the
support of this into our product line and then into their
evolution.

Full automation has not been proposed in many software
product line evolution approaches, especially among those
with their evolution specialized [10] to variability [11] so
far. Information about “What the system is”’ encompassing
the domain knowledge is expected as the input to evolve
DocGen using FDL [12] and reconfiguration to best fit
interrelation between components are left unaware. Software
is rather decomposed into components that are composed into
a single source tree to benefit from a centralized configuration
and build [12]. Consequently, no new domain knowledge
is emerged from the organization of variability manifesting
in its configuration. We perceive such an approach to be
problematic for combining and composing small scattered
code fragments. Similarly, existing domain knowledge estab-
lished in the form of a variability configuration is provided
as an input to another approach [11]. It optimizes variability
by supporting the derivation of restructuring strategies with
visualizations of the usage of base products. On the contrary,
we avoid applying the restructuring changes in iterative
development to predict it with the respective data.

Various specific emerging works tend to justify these
demands, such as making configuration expressions, accord-
ing to which variable functionality is selected into final
products, more concise [13], and providing quality assurance,
especially repeatable techniques that exceed single-system
development [14]. These cases are manually resolved
through the participation of fluctuating domain experts and
developers. Furthermore, these problems require further
automation [10], [11] to reach states when manual manage-
ment is ineffective and conflicts cannot be easily resolved.
On the contrary, related technologies such as conditional
compilation [15] or those based on annotations applied
in annotation-based software product lines [16], such as
frame technology [17], cannot handle these tasks without
much effort. Additionally, the development processes must
significantly change if aspect-oriented programming extends
both techniques in the form of framed aspects [17] owing to
aspect orientation and introduced dependencies.

For this reason, this paper introduces a new approach to
fully automatically and iteratively evolve annotation-based
software product lines by deciding on adding, removing,
and updating commonality and variability taken by related
strategies and possibly supported by their data-driven exten-
sion. Variability is expressed in code using annotations as
representative of an annotation-based [16] software product

27326

line. Additionally, this approach can drive the evolution of
code, even from the early beginning, when variability is not
identified or explicitly marked.

The approach proposed in this paper targets the manage-
ment of a large number of features, which is one of the main
challenges in variability management [10]. Additionally, the
required data to perform simulations that primarily enable
observation, testing, and optimizing feature interactions are
missing. Leaving simulations and modeling the software
product line evolution unsupported prevents utilization of
its outcomes. Consequently, to tackle these challenges, our
approach is initially developed, successfully applied and
presented in the case of evolving fractal scripts. They are
much simpler than any other entities because the state in
the program is held only through functionality in fractals
calling itself and the composition of smaller code fragments
as constructs to set up constituents. The application of
even minor code changes tends to manifest as user-visible
features, owing to the recursive behavior responsible for
composing constructs into constituents that repeatedly occur
in differently configured series. Consequently, constructs can
be set up in a large number of ways; however, symmetrical
patterns lead to the production of good-looking shapes.
These patterns became easily perceived in infinite detail
as a feature, thanks to self-dependency in the recursively
applied composition of these constructs into their respective
constituents. Introducing new constructs can be performed
easily and directly into the proposed functionality, which
repeatedly calls the self to satisfy the introduced dependen-
cies on previous versions. Accordingly, these dependencies
are forced to be reused. We can continuously benefit from
reuse, which is propagated further in their iterative evolution,
by establishing the software product line. During each
iteration, commonalities and variability are managed, along
with an optional generation of new assets, which are applied
at the end of the evolution iteration phase to derive the final
products.

The reduced complexity helps perform various simulations
on many product lines and their products, such as optimizing
the in-code representation of feature trees to improve their
comprehension. Additionally, the approach brings some
views of product families through their diverse representa-
tions, leading to extensive modeling of diverse aspects of
variability through its related representations reflecting the
provided code sample.

We bring full automation into our approach and support
it with a configurable framework, which is available in
GitHub.!

The remainder of this paper is organized as follows.
Section II summarizes the capabilities of various tools
towards flexible and automated software product line evo-
lution. Section III presents the adapted concepts and steps
of our minimalistic model of automated aspect-oriented

1 https://github.com/jperdek/automatedSPLEvolutionFramework

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

software product line evolution. Section IV demonstrates the
configuration, flow, and steps of our approach applied to soft-
ware product line evolution for drawing fractals. Section V
describes in detail the flow and algorithms to fully automate
the core of the software product line evolution applied to
the evolution of fractals. Section VI provides a containerized
version of a fully automated framework with services for
scaling and producing diverse representations. Section VII
evaluates the capabilities gained from diverse representations
for automated and minimalistic evolution and perspectives to
extend its application. In Section VIII, the extensibility of
the proposed approach to support evolution algorithms, the
role of aspects and decorators, and further possibilities and
challenges are discussed. Section IX compares our results to
what others have achieved. Section X concludes the paper and
introduces ideas for future work.

Il. IN-CODE VARIABILITY MANAGEMENT: TOWARDS
FLEXIBLE AND AUTOMATED SOFTWARE PRODUCT LINE
EVOLUTION

Software product lines increase the effectiveness of product
delivery by reusing existing assets, including code fragments,
tests, and software artifacts. Variability management is
necessary to select and integrate these assets as the main
component of a software product line. The most commonly
used implementation at the code level in the area of software
product lines is conditional compilation [15]. Alternatively,
a more comprehensive configuration and independence from
the used programming language can be achieved with frame
technology; specifically, marks/tags are used inside the
source code, which becomes a template [17].

The difference in the object-oriented code displayed in
Listing 1 from a similar piece of code written in frame
technology is demonstrated in Listing 2, where both are
taken from the original paper [17]. As can be seen, the
frame technology requires a third-party tool to be used.
Accordingly, the code must be treated as a template.
If aspects are integrated with this technology, it allows for
flexibility, reusability, and evolvability as the selection of the
prevalent benefits from this combination [18]. Despite these
benefits, aspects make solutions dependent on the support
and compatibility of third-party libraries or a particular
compiler to weave them. Additionally, run-time weaving
can cause performance issues [19]. Possible trade-offs can
be reached with comments used to annotate variable code
fragments [13], [20].

Examples of variability annotations used to annotate some
variability related code fragments are shown in Listings 3
and 4, followed by associated configuration expressions
in Listings 5 and 6. One of these is our lightweight
aspect-oriented software product line method. A demonstra-
tion of our lightweight method without aspects in products
based on a caching solution written in Java is presented
in Listing 7. Here, aspect orientation is used marginally
in the background only for variability management to
allow the instantiation of a particular product according to

VOLUME 13, 2025

1 class Editor extends JEditorPane
implements HyperlinkListener ({
2 private Network network; private
Hashtable cache = new Hashtable()

’

3 // methods for adding and
retrieving data to/from cache
4 //.. constructor and editor

initialization
5 public void hyperlinkUpdate (
HyperlinkEvent e) {
6 if (e.getEventType() ==
HyperlinkEvent .EventType.
ACTIVATED) {

7 String url = e.getURL() .toString
()7

8 Document cachedPage = (Document)
getFromCache (url) ;

9 if (cachedPage == null) {

10 network.requestInfo (this, url)

; addToCache (url, this.
getDocument) ;

11 } else { // get record from
cache and display it
12 this.setDocument ((Document)

cachedPage.getContent ());
13 }
14 }
15 }
16}

LISTING 1. Object-oriented implementation of the cache feature (taken
from [18]).

configuration and without its derivation at run-time. The code
is modularized, even without aspects, and only two annota-
tions are required. The annotation in the caching method is
redundant; however, it will be required if this caching feature
is decomposed further into other subfeatures. The aspects
incorporated into software product line feature management
help execute commented functionality in predefined places
where associated configuration expressions are evaluated
positively. By contrast, aspects are used directly to separate
crosscutting concerns in frame technology from aspects and
the original lightweight method.

The approach concerning variability management with
the introduction of superimposed variants [21] is similar
to our lightweight aspect-oriented software product line
method [13], but rather in more abstract levels, does not
directly concern how entities or structures are expressed for
the purpose of variability handling. These can be transformed
back into code. Many of the aforementioned representations
of wvariability handling in code use variables to express
variation points. Information about variability from these
variation points can be composed of configuration expres-
sions, direct conditions for code fragment inclusion/exclusion
into derived product instance in the form of conditional
compilation, or differently, such as with the feature-oriented
domain analysis (FODA) notation [22], [23]. The type of
knowledge included in place of the variation points inside
the source code has an exclusive configuration character.

27327

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

1 class Editor extends JEditorPane
implements HyperlinkListener {

2 <option cache>

3 private Network network; private

Hashtable cache = new
Hashtable () ;

4 // methods for adding and
retrieving data to/from
cache

5 </option>

6 //.. constructor and editor

initialisation

7 public void hyperlinkUpdate (

HyperlinkEvent e) {

8 if (e.getEventType() ==
HyperlinkEvent.EventType.
ACTIVATED) {

9 String url = e.getURL() .

toString();

10 <option cache>

11 Document cachedPage = (

Document) getFromCache (
url);

12 If (cachedPage == null) {

13 </option>

14 network.requestInfo (this,

url);

15 <option cache>

16 addToCache (url, this.

getDocument) ;

17 } else { // get record from

cache and display it

18 this.setDocument ((

Document) cachedPage.
getContent ()) ;

19 }

20 </option>

21 }

22 }

23 }

LISTING 2. Using frame option tags to identify caching code (taken
from [18]).

1 //PV:IFCOND (pv:hasFeature (' HazardWarning
"))
// get/set value for warning_lights
static int warning_lights_value;
void set_warning_lights (int state) {
warning_lights_value = state;

}

int get_warning_lights () {
return warning_lights.value;

}

//PV:ENDCOND

—_ O 0 00 O WL R WN

——

LISTING 3. The variability-annotated code using pure::variants (taken
from [20]).

Specifically, no information associated with developing
related code fragments, their previous versions, or their
implicit relations to the hierarchical representation of used
models is preserved. Consequently, problems related to each
approach or technology complicate the evolution of software

27328

1 //%{"playerNames": "true", "
computerOpponent": "true"}
import battleship.ComputerPlayer;

2
3 ...
4 public aspect PlayerName ({

5 private String AbstractPlayer.name;
6

7

8

//#{"playerNames": "true"}

Player around(): call(Player.new(..)
) && if (Configuration.
playerNames) {

10 i'.

LISTING 4. variability-annotated code using the lightweight
aspect-oriented method (taken from [13]).

1 pv:hasFeature ("HazardWarning")

LISTING 5. Configuration expressions identified according to
pure::variants (taken from [20]).

1 {"playerNames": "true", "
computerOpponent": "true"}
2 {"playerNames": "true"}

LISTING 6. Configuration expressions identified according to the
lightweight aspect-oriented method (taken from [13].

product lines and affect the resulting derived products.
In conclusion, the resulting solutions should not be dependent
on a particular technology for variability management, are
easy to use for automatization and change realization, support
modular development, easy integration and compatibility
with old software versions, especially independent of the
execution of a particular programming language, and also
applicable to different assets.

Extensive studies focused on software product line evo-
lution have evaluated the quality of software product lines
across object-oriented and aspect-oriented paradigms [15],
but also include the use of conditional compilation [24].
Frequently referenced systems in these studies are the web
information system HealthWatcher [15] and the embedded
application Mobilemedia [15], [24], [25]. The effective
separation of crosscutting concerns, as the main benefit of
applying aspects, was observed during the refactoring of
HelthWatcher in the evolution process. Specifically, it is
efficiently applied to separate ACID principles for persistence
and exception handling [26]. Aspects should be preferred in
the accomplishment of the open-closed principle according
to the increased number of fulfilled requirements for change
realization with respect to conditional compilation, which
results in a decreased number of modifications applied to
the original code [15]. Conditional compilation is one of the
most commonly used techniques for implementing software
product lines, especially for variability management at the
code level. The transformation of the mentioned solutions
and their effects on the software product line evolution
process, especially for change realization, has probably
not been realized for frame technology and its associated

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

1 //RQwholeClass ({"cache": true})

2 class Cache {

3 private static Hashtable cache = new
Hashtable () ;

4 // methods for adding and

retrieving data to/from cache

5

6 //@wholeMethod ({"cache": true})

7 public void availableCache (String

url, Editor editor) {

8 Document cachedPage = (Document)

Cache.getFromCache (url) ;

9 if (cachedPage == null) {

10 editor.requestInfo (url); //
solving previous task-
visitor pattern should be
used for various
functionalities

11 addToCache (url, this.
getDocument) ;

12 } else { // get record from cache

and display it

13 this.setDocument ((Document)
cachedPage.getContent ());

14 }

15 }

16 }

17

18 class Editor extends JEditorPane
implements HyperlinkListener ({

19 private Network network;

20 //.. constructor and editor
initialisation

21 public void hyperlinkUpdate (
HyperlinkEvent e) {

22 if (e.getEventType() ==

HyperlinkEvent.EventType.
ACTIVATED) {

23 String url = e.getURL() .
toString();
24 //@skipLine ({"cache": false}},

" [NOT=Cache.availableCache (
url, this);1")

25 this.requestInfo(url);

26 }

27 }

28 public void requestInfo (String url)
{

29 network.requestInfo (this, url);

30 }

31}

LISTING 7. The caching example based on our modification of the
lightweight aspect-oriented method [13] with the derivation of
aspect-free products.

aspect-oriented extensions known as framed aspects [17].
In this case, problems with templates and the need for a
particular software tool likely outweighed the benefits of
potentially improving extendability and those perceived by
some possible combinations of these technologies. Con-
versely, significant problems in aspect-oriented programming
were identified during the refactoring of the database
system [27] and calculator [28]. The inability to capture

VOLUME 13, 2025

and extend some places in a given source code, especially
inside methods, is required to apply hooks to hang aspects
on them. Similarly, for realized use cases, their application is
problematic for implementing variability management.

Introducing a new functionality can cause conflicts among
aspects that contain effectively modularized crosscutting
concerns. These conflicts are usually handled by applying
other aspects on separated layers [29] in proposed layered
architecture. These are the consequences of quantification
and obliviousness, which, on the contrary, belong to the
most influential advanced aspect-oriented techniques and
are necessary to achieve the majority of benefits [30].
For the first one, it is possible to affect various places
in a code, and the second refers to the impossibility of
identifying how a given code is affected only by itself.
Despite conditional compilation and templates, the code
is maintained in particular aspects. The use of aspects
requires specifying all relevant pointcuts that are affected.
Consequently, new side effects are introduced, including
additional code complexity and aggravated traceability of the
affected code fragments, which do not directly show signs
of how they are affected. The mentioned conflicts between
aspects that are handled on separate layers require the
application of advanced aspect-oriented techniques, which
usually manifest with complex specifications of pointcuts.
Their complexity issues can be resolved using simpler,
restricted, and widely spread aspect-oriented techniques such
as decorators or strictly specified pointcuts bound to a
specific type or attributes/functionalities. Additionally, they
can be applied as independent concerns associated with
modular code fragments and are separable from business
functionality. Their removal is performed through an abstract
syntax tree (AST) representation filtered according to naming
conventions.

Variability management can be introduced in several ways.
Universality, independence from the specific programming
language, lower complexity of variability management
constructs, flexibility of change realization, compilability,
independence from practices and management practices
associated with software product lines, simplicity, and
interoperability can be achieved using the lightweight aspect-
oriented method [13] for feature management. The lower
in-code complexity of variability management constructs
in favor of the lightweight method over wrappers used in
pure::variants, frame technology with all its variants, and
other approaches is proven by converting them into an in-code
version and evaluating their complexity in the context of each
variability-annotated file [31]. Similarly, using aspects for
change realization is far easier owing to the non-invasive
join points [18]. A specific product can be directly tested
simply by launching a program as the proof of compilability
and execution. Its lightweight nature prescribes only three
types of annotations to copy whole files, methods, and
one-line code fragments, respectively, where fulfilling such
work is done with an additional tool that can be customized

27329

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

for any language [13]. On the contrary, considering its
disadvantages, such as relying on aspects, quantification
and obliviousness, the problem of overall separation of
variability management from constructions in code, and the
inability to evaluate the complexity of used annotations
and configuration expressions, it is beneficial to remove
aspects and possibly thanks to the use of decorators and
additional transformations as an extension of the mentioned
approach. The application of aspects that guarantee the full
removal of aspects during product derivation, as well as
the independence of products on aspects, can better help
tune the existing functionality of the specific product that is
instantiated owing to aspects during development.

The domain itself significantly influences the variability
management and configuration process of individual assets,
primarily with efforts towards extendable and maintainable
solutions [15]. Their outcome focuses on how given software
fragments are organized, including modeling common and
variable features for specific situations and contexts, usually
in the form of a software product line architecture [32].
Despite the direct focus of this architecture on variabil-
ity management [33], which guarantees the simultaneous
capture of various products [34] with an explicit focus on
the software product family, including overall support by
defining all parts of these products [35], which are significant
differences in comparison with a reference architecture,
the principles of variability modeling are not rigorously
applied in general by scientific publications or papers,
nor in practice [1]. The identified lack of rigor during
the simulation of interactions between features is bypassed
by directly applying domain knowledge to solve various
tasks, especially applying decision-making at the design
level by proposing a variability model. The limitations of
overly abstract models complicate the automation of software
product line evolution processes. Consequently, an integrated
approach based on linear algebra [36] is focused on extending
the related information to the decision-making of architects
through instantiated views according to the synthesized
feature models in this process. Each is based on a structural
analysis combined and balanced with semantics.

Knowledge modeling, simulation of interactions between
features, and application of principles of variability modeling
are processes in which proper incorporation into solutions
requires a large number of potentially demanded products on
the output. The integration of various feature selections can
create unwanted products or cause defects that can be handled
during optimization [10]. The search to identify defects
usually starts from more abstract levels, particularly with the
analysis of feature models [37]. Semantic networks allow the
modeling of diverse artifacts of resulting products, various
representations of products, and associated data extracted
from software, together with the advantage of deriving
new facts [38]. The automatic creation of fast-instantiated
outputs at the code level, which are also direct products and
for simplicity, without other dependencies associated with

27330

interacting modules, is possible by applying the lightweight
aspect-oriented method for variability management to fractal
drawings (in the form of environments) [13]. Similarly, such
an application provides opportunities to effectively create
various representations from the associated metadata of each
product, especially how its code is organized, and thus jointly
contributes to the knowledge of their software product family.
These capabilities make the evolution process bound to the
original code and directly to software product line families.

lll. A MINIMALISTIC MODEL FOR AUTOMATED
SOFTWARE PRODUCT LINE EVOLUTION
Most software product lines neglect knowledge modeling
and simulation of the interactions between features [1],
which are essential for supporting software product line
dynamics and extracting domain knowledge. Consequently,
we designed an approach to aspect-oriented software product
line evolution based on our lightweight method [13], which
handles variability in a minimalistic and automated manner.

Its primary capability is to fully automatically and iter-
atively evolve annotation-based software product lines [16]
by deciding on adding, removing, and updating commonality
and variability taken by related strategies and possibly sup-
ported by their data-driven extension. Variability is expressed
in code using annotations to represent the annotation-
based [16] software product line. The mechanism is designed
to manage variability in a selected script. The script is
optionally extended with the provided software artifacts, such
as code fragments from similar software product line scripts.

Minimalism lies in managing and accommodating the
evolution of software product lines, relying only on decisions
regarding commonalities/variability and introducing new
variable functionality. Consequently, the reusable assets are
redefined, and variability predefines the specifics of the final
products while continuing to evolve. Each combination of
these brings the establishment of a new evolved software
product line differentiated by new way how its chosen
common assets are reused and which functionality will
be selectively propagated into final products, followed by
updates on particular variation points about new exported
functionality. Specifically, the performed operations consist
only of effects related to variability handling, which are
captured iteratively in its iteration into the newly evolved
software product line. The difference between the evolved
software product line and its predecessors is restricted to
variability handling. Decisions are made through precon-
figured strategies used exclusively for handling variability.
Additionally, enabling or disabling specific functionalities,
such as injecting supporting functionality to incorporate a
data extraction mechanism into a new version of an evolved
software product line, is configurable through a few global
settings.

The approach is presented on fractal scripts of low
complexity capable of observing configurations of vari-
ability management annotations where visible features are

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

recognizable into infinite detail owing to the introduced
minimalism. Handling semantics is initially omitted to be
handled later with data sources as a transition from less
complex to samples with higher complexity.

Additionally, the lack of specialized models with bound
domain knowledge or insufficient detail to resolve the
incorporation of new features from high abstraction levels
complicates the measurement of the correctness and quality
of a particular interaction between features. We tackled and
resolved such problems with the aforementioned minimalistic
mechanism, managing the incorporation of new code-level
features with the full support of diverse data representations
extracted directly from instantiated code structures and
semantics. In the case of our software product line for
drawing fractals, these diverse representations consist of
code (commands to draw shapes), graphs (methods or data
structures as nodes and calls between them as connections
which are dynamically created during drawing of shapes),
rasters (a visual image of shapes drawn on output), and
vectors (markup language to draw shapes), which are
intended to be integrated together in the form of ontology
(triples).

The lightweight nature of our approach is preserved in
variability handling ensured in the sequence of respective
strategies through TypeScript decorator technology [39].
We refer to this sequence as a variability handling pipeline.
It consists of groups of strategies organized in a sequence
(see Fig. 1), which are selectively employed to leverage
complexity. Most of these strategies handle injections of
existing functionality into selected places that are responsible
for introducing new features. We applied it to alter recursive
behavior during the drawing of fractals, lowering possible
modifications and increasing effects perceived as depen-
dencies of the functionality on itself caused by repeatedly
calling oneself. Fractal drawing is performed by updating
each constituent through the update of constructs occurring
in place of recursively called functionality, which results
in the introduction of a separate feature in each iteration.
Consequently, the pipeline for variability handling as part of
the software product line evolution is executed per iteration to
directly track these important changes. One or more strategies
are selected from each group in a particular iteration. The
pipeline for variability handling is responsible for decisions
or reconsidering inclusions of processed code fragments
into variability and commonality, injecting new code based
on contextual information into the processed code, and
providing and organizing various representations of particular
software product lines or even product variants. The full range
of diverse related data representations captures the evolved
stages of a particular product family. Diversity is integrated
and organized into a unique dataset or ontology.

Managing the variability in each iteration of the software
product line evolution begins by processing annotated or
a totally variability-unaware script. In the pipeline for
variability handling, this processed script is divided into

VOLUME 13, 2025

Variation points
divisioning strategies

Commonality/variability
selections

Restricting possible calls
from positive variability
strategies

Value assignment
strategies for templates

Parameter matching
strategies

Callable constructs
extraction strategies from
templates (parameter
substitutions)

Value assignment
strategies for callable
constructs

Variation points selection
strategies

Callable constructs in place
of variation points
selection strategies

Aggregation into modular
fragments strategies

Aggregation of callable
constructs synthesis

Data Strategies

FIGURE 1. Sequence of variability decision strategies.

variation points, what is performed by Variation points
divisioning strategies (see Fig. 1). The strategies designed
for this purpose determine which if not all, the variation
points in the script should be considered. The resulting
variation points are processed using the next group of strate-
gies (called Commonality/variability selections). Particular

27331

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

strategies re-evaluate their affiliation to the common and
variable if appropriate annotations are available; otherwise,
they are divided into these two categories. Consequently, the
script is enriched with information about variability, or this
information is reconfigured.

Several strategies exist for managing and restricting the
selection of substitution candidates to the observed variation
points in the previous phases of the variability handling
pipeline.

The first one restricts the possible calls from positive
variability. It filters possible calls of a particular functionality
that can be injected at a specific variation point position.
Such calls are transformed into templates to prepare them
for substitution, followed by assessing their code complexity
or applying custom metrics. The available parameters or
variables are substituted into templates to extend the existing
functionality while avoiding the majority of defects due to
undefined or inaccessible variables/parameters. Substitution
occurs according to the availability of variables/parameters
at specific positions in the source code of a particular
programming language.

Recommendations for parameter substitution in the form
of regular expressions can be obtained from parameter deco-
rators and used in parameter-matching strategies. Currently,
the parameter name must be a substring of the name extracted
from the template or vice versa. The aggregated admissible
parameters and variables are checked against each template
associated with a particular variation point. If a substitution is
successful, the injection of such a call introduces no defects.
Extraction of executable calls from templates across all con-
sidered variation points and their further preparation are the
responsibility of callable construct extraction strategies from
templates. Their preparation includes the aforementioned
substitution of parameters/variables.

The selected callable constructs from the previous vari-
ability handling pipeline phase are assessed according to
a particular metric or custom strategy. We incorporated
and initially applied a strategy based on code complexity
metrics [31]. Other metrics can be used to consider the
relevance of callable constructs, especially on a semantic
basis.

The preparation of the calls that can be substituted is
complete at this point. The pipeline for handling variability
continues with the creation of features. Firstly, the destination
variation points are selected from among all those found at
the beginning of this pipeline for variability. The aggregation
of calls associated with these points is optionally used to
consider the number and quality of available constructs.
Secondly, one or more callable constructs are selected from
these variation points according to the configuration and
strategy used. These constructs may be aggregated into
larger entities such as methods or classes. This aggregation
demonstrates the introduction of more complex and modular
entities in the code. Thirdly, aggregation among all selected
calls associated with the selected variation points is created
to cover features containing scattered concerns and ensure

27332

their incorporation in one iteration. Finally, the variability
in the evolved software product line should be optionally
documented using various views, considering the code, its
dynamics, and the resulting product according to visual
appearance, or last but not least, as a list of drawn
entities. The incorporation of functionality to create diverse
representations in an evolved software product line is the
responsibility of a group of data strategies. Decisions on
which and how diverse representations will be integrated
and used are left to bridge the following new evolution
iteration. The process is incorporated into software product
line evolution to dynamically extend and analyze software
product lines, particularly to gather domain knowledge
and optimize configuration expressions. Concatenating the
aforementioned evolution iterations or the entire evolution
leads to an organized and configurable evolution of the
entire software product line. Our approach allows us to
adapt and evolve a single-system software tool based on our
evolutionary process/model as a software product line.

IV. A DEMONSTRATION OF FULLY-AUTOMATED
VARIABILITY HANDLING: FIVE-SIDED FRACTAL
EVOLUTION

Variability can be studied on families of fractals. Each
representative has a function where, after the application of
multiple changes, it remains a fractal. Fractals are geometric
objects created in a recursive or iterative process that can
show infinite detail [40]. They consist of at least two shapes
called the base and generator, where the generator changes
parts of the base by applying a given mechanism, such
as scaling, rotation, or translation [40]. Additionally, the
generated samples can be processed using third-party models
that evaluate their quality or generate fractals on their own.
The original software product line can evolve using the most
appropriate ones. A decision on which variation points should
be removed or added should also be made.

We created six different fractals with variations, including
various programming styles restricted by the functionality
provided in a particular programming language. TypeScript
programming language is used in the presented case. The
expected outcome of fractal evolution is to find shapes
or fractals with high aesthetic value. Transferring such
fractal evolution into a field of software product lines
primarily requires variability handling and quality enhance-
ment. Our demonstration focuses on the latter, contributing
to precise analysis, modeling, and support of variability
handling. Consequently, we are extracting and adapting
diverse representations across fractal evolution that capture
all these aspects (aesthetics, commonalities and variability
in a software product line, quality of a software product
line, etc.), and open space to introduce, incorporate, and tune
appropriate models into this evolution. We demonstrate our
approach, its capabilities, and the results from evolving a five-
sided shape; however, the previously applied configuration is
applied almost similarly to the evolution of other shapes.

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

Consider a simple script written in TypeScript, as presented
in Listing 8.

1 var newVariable = "Hallo";

2 function a(paraml, param2) {

3 @wholeClass ({ "outsideGallery": "true"
})

4 class GG {

5 callMe () { /= callMe function

logic ... %/ }

6 }

7}

8 /% other content ... */

LISTING 8. A simple TypeScript code.

The parser reads the entire file and transforms it into an
abstract syntax tree. Abstract syntax trees make processing
code easier, especially in recognizing and harvesting each
large code entity, such as a class or function. Obtaining
their beginning and terminating positions is not complicated
because of the occurrence of these values in the processed
abstract syntax tree. Other smaller code constructs are
associated with these entities, according to the semantics
of a particular programming language. For example, a class
variable, even declared later, can be used in each non-static
class function. After these steps, the specific entity is placed
into the context hierarchy according to its position in the
abstract syntax tree. An example based on the previous
Listing is shown in Fig. 2. Global variables from the program
are stored separately outside the hierarchy.

<<Class>> <<GlobalContext>>

GlobalContext
pRT— S (CodeContext = lobalConte
RootContext

4‘ ‘

<<FunctionContext>>

-newVariable = "Hallo"

function a)

-parameters: List =

|
1
<<ClassContext>>
class AnotherClass
['param1’, 'param2’] <‘ T

<<ClassContext>> P—
class GG anotherClassFunc()

[

SSln

<<FunctionContext>>

<cFunctionContext>>
callMe()

anotherFunc()

function a() context
end position

function a()
context

0 = start position
Root context

FIGURE 2. The hierarchy of entities with preserving semantics.

Three additional layers are created because of the declara-
tion of the class inside the function and the class functions.
This hierarchical data structure gathers information about
particular entities used to specify possible constructs and
injects it in place of a specified variation point. For positive

VOLUME 13, 2025

variability, new variables are declared in place of possible
variation points with such an interoperable JSON expression
encompassing possible calls that can be instantiated or
even available parameters or variables. Additionally, all
possible places that belong to negative variability, including
existing entities, are annotated using system annotations. The
variability in the program is incorporated into the processed
abstract syntax tree and then into the code according to the
following points:

Marking positive variability
markerVP[id] Variability is expressed using detachable
decorators

Annotating negative variability
AnnotationVP[id] Variability is expressed using detach-
able decorators with variability configuration expres-
sions

Configuring parameters
paramVP[id] The rules expressed using regular expres-
sions are applied to control the substitution of anno-
tated parameters while converting code templates into
callable constructs.

The result after this phase using an implementation capable
of finding all the variation points is shown in Listing 9.

1 var markerVPl = { "global": {}, "inner":
{ "p": 699 } };

2 (@AnnotationVPl.variableVP () wvar
newVariable = "Hallo";

3 wvar markerVP2 = { /x...*x/ };

4 @AnnotationVP2.functionVP () function a(
paraml, param2) {

5 var markerVP3 = { /x...x/ };

6 @AnnotationVP3.classVP ()

7 class GG {

8 @AnnotationVP10.classVariableVP ()

9 markerVP6 = { /*...%/ };

10 @AnnotationVP4.classFunctionVP ()

11 callMe () |

12 var markerVP4 = { /*...*/ };

13 }

14 @AnnotationVP1ll.classVariableVP ()

15 markerVP7 = { /x...x/ };

16 }

17}

18 wvar markerVP15 = { /*...%/ };

19 /=« other content ... */

LISTING 9. Incorporating variability information into processed script.

The algorithm used to find variation points can be
replaced with its version, which is restricted to processing
only particular places, such as classes. A unique identifier
is assigned to each annotation or marker. In this phase,
configuration expressions can be checked or generated in
place of annotations to manage the variability of the existing
entities. In-code complexity metrics for these negative vari-
ability annotations and their configuration expressions were
assessed using an approach to measure in-code variability
based on decorators [31]. The measured complexities can

27333

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

be used to select, compare, and optimize these configuration
expressions, especially in an automated fashion. Finally, all
found and expressed points with markers or annotations are
persisted in a JSON file to aggregate the harvested variation
points in one place. The use of the JSON format supports
interoperability. The captured data represent information
regarding commonalities and variability in the processed
script and the state of the processed sample in a particular
iteration of evolution. They are used for two reasons related to
variability. The first is to select places to inject new content,
leading to the introduction of new changes in the evolving
software product line. The second is to swap some of the
selected negative variability variation points with those not
chosen. This leads to the derivation of different products
due to the selected variable features incorporated into those
responsible for achieved reuse.

Persisting the variation points enables the removal of
negative-variability system annotations from the annotated
variation points. Only positive variability markers, each
containing code contexts, serve as the next optional injection
of a particular content into their position. The file now
appears as shown in Listing 10.

One or more such markers can be replaced with a
functionality that is feasible to call. Such a call must be part
of the marker configuration and the substituted parameters
should be valid in a particular context. The substitution
process consists of selecting some of the positive variation
points, obtaining constructs that can be substituted, creating
templates where parameters are substituted according to their
type, substituting these parameters if their name is contained
in the parameter name in the template and types match, and
finally creating a limited number of new updated software
product lines for this content. Each step is handled by a
particular strategy to decrease processing demands or support
diversity by easily exchanging it. For example, a strategy that
selects recursively executed functions is applied instead of the
original one, returning all functions.

The changes are applied to an abstract syntax tree with
incorporated system markers from the beginning of the
iteration. Such an abstract syntax tree is larger and the
positions of previously observed entities have changed.
To properly find parameters and variables for substitution
in the created hierarchy, it is necessary to find mappings
between abstract syntax trees, especially their larger entities,
such as functions or classes representing nodes. For this
purpose, we obtain the identifiers of these entities along
with their type, and organize them in sequences created
according to the path from the root. After processing both
trees, we mapped the blocks of the abstract syntax tree
with the information regarding the captured entities to the
identifiers of these entities. Using markers, we propagated
the correct positions from the original abstract syntax tree to
the updated version, which is much larger owing to variability
annotations and markers. After deriving five-sided fractal

27334

1 wvar markerVPl = { "global": {}, "inner":
{"p": 0} };

2 wvar newVariable = "Hallo";

3 wvar markerVP2 = { "global": { "
globalVariables": [{ "name": "
newVariable", "type": "string" }] }, "
inner": { "p": 0 } };

4 function a(paraml, param2) {

5 var markerVP3 = { "allAvailableCalls":

["a([%[paraml: any]%], [%$[param2:
anyl%])"], "global": {

6 "globalVariables": [{ "name": "
newVariable", "type": "string
" }] }, "inner": { "p": 709,
"allAvailableCalls": ["a([%I
paraml: anyl]%], [%[param2:
anyl]%])"], "callable": "a([%]
paraml: anyl]%], [%[param2:
anyls])", "
availableParameters": [{ "
name": "paraml", "type": "any
"}, { "name": "param2", "
type": "any" }], "
functionName": "a", "
contextType": "Function", "
returnType": "any" } };

7 @wholeClass ({ "outsideGallery": "true"

})

8 class GG {

9 markerVP6 = { "allAvailableCalls":
["a([%[paraml: any]%], [%[param2

any]%])"], "global": { "

globalVariables": [{ "name": "
newVariable", "type": "string"
}1 }, "inner": { "p": 327, "
allAvailableCalls": ["a([%][
paraml: anyl]%], [%[param2: any
1%1)"], "callable": "", "
contextType": "Class", "
className": "GG", "functionality
": ["callMe()"] } };

10 @wholeClassMethod ({ "outsideGallery
M. MErpe" })

11 callMe () {

12 var markervpP4 = { "
allAvailableCalls": ["a([%]
paraml: anyl%], [%[param2:
any]%]1)"], "global": {

13 "globalvVariables": [{ "
name": "newVariable", "
type": "string" }1 }, "
inner": { "p": 323, "
allAvailableCalls": ["a
([$[paraml: any]%], [%I[
param2: anyl%])"1, "
callable": "callMe ()",
"functionName": "callMe
", "contextType": "
Function", "returnType"

"any" } };
14 / * callMe function logic
*/
15 }
16 markerVP7 = { /x x/ };

LISTING 10. Illustration of left positive variability in processed script.

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

17 }

18 var markerVP8 = { /* ... %/ };
19 1}

20 wvar markerVP15 = { /x ... %/ };

21 /% ... other content ... x/

LISTING 10. (Continued.) lllustration of left positive variability in
processed script.

products, their successful immediate rendering in the browser
proved that the mapping was correct and no wrongly used
variables or parameters occurred.

A. ESTABLISHING A PRODUCT LINE BASED ON A
FIVE-SIDED FRACTAL

We make an extendable implementation of a five-sided fractal
with included information about the coordinates of the larger
and six smaller fractals using knowledge from planimetry.

FIGURE 3. Calculating subpart of fractal.

Initially, we calculated the length of the smaller five-sided
side based on the size (length) of the larger five-sided
side. We used the following information drawn from Fig. 3.
Accordingly, we used the sine theorem based on the middle
triangle:

k l
sin(72) ~ sin(36)
where angle 72 is obtained by creating a five-sided inside
circle as 360/5 = 72 and 36 is obtained from the triangle as
180—72—72 = 36. Length of part between two smaller sides
(k) on the large side (the side of a large five-sided shape):

I k * sin(36)
sin(72)
The length of the larger side (the side of a large five-sided
shape) is:

ey

@

n=2xk+I1 3)
Putting them together results in getting a smaller side from
a larger one:
I — n x sin(72)
T 2% sin(72) + sin(36)

“

VOLUME 13, 2025

Then, to draw a fractal, we must obtain the coordinates
of points A; and A; inside the line |BA| that delimits the
large side into smaller sides as shown in Fig. 4. Mentioned
delimitation is possible by using linear interpolation:

Ai=[(1 —g) %A, +gi*Bi, (1 —g)*A; +gi*Bjl
(5)

where parameter g; is used to determine point A| as g1 =
|k|/|n| and parameter g; is used to observe point A; as go =
|l +k|/|n|.

Subsequently, it is necessary to determine point 7', where
two smaller five-sided shapes touch each other. Firstly,
we obtain the length of the middle tangent line crossing
this point and the center point S. We obtained a triangle
with a smaller side equal to half of side /, side of small
five-sided shape k and unknown side r depicted in Fig. 5.
The Pythagorean theorem is used to obtain the following
expression:

2=k (/2 ©)
Secondly, we get the coordinates of point S as:
S[A1x + (Aox — A1x)/2, A1y + (A2y — A1y)/2] (7)

Thirdly, we used interpolation to find coordinates with
parameters evaluated based on the ratio that is calculated as
gr = r/w where r is |ST| length and w is the length of the
large fractal side, including points A and B as |[BA|:

M =[(1—g)*Ax + gr * By, (1 — g) x Ay + g * B)]
(®)

Finally, we observed two possible tangent points according
to the rule expressed by the equation |ST| = |[AM| =TS =
M — A. These tangent points T can then be found by refining
previous equation into 7 = (M — A) + S, which leads to:

T[(Mx - Ax) + Sx’ (My - Ay) + Sy] (9)

FIGURE 4. Points delimiting the side of a larger five-sided fractalinto two
sides of smaller fractals.

followed by switching the coordinates to get resulting
perpendicular points to line AB:

T[—y,x]as T[—(My — Ay) + Sx, (Mx — Ay) + 5,1 (10)
Ty, —x]as T[(My — Ay) + Sy, —(M, — Ax) +Sy] (11

We select a point whose distance from the opposite point
(D in this example, according to Fig. 6) is smaller.

27335

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

FIGURE 5. Getting upper point T: distance r and tangent line from rp.

We draw a line between every pair of points from Al,
A2, and T. Analogically, we evaluated and connected each
of the remaining inner points: 72, T3, T4, and TS5, with
two particular delimiting points to draw six similar, smaller
five-sided shapes. The resulting fractal is shown twice in
Fig. 6. The first one highlights found T points and the second
all known points used to made constituent out of constructs
(to ensure the creation of fractals [41]) and which can be
modified to further update this process.

FIGURE 6. Inner and connected points of recursivelly divided shape.

The mathematical proof based on planimetry demonstrates
recursively evaluated equations within the program. The
transition from a larger five-sided fractal into each of the
six smaller fractals recursively is the key to the propagating
similarity between the construct (smaller five-sided shapes
contained in the large five-sided shape) and constituent
(large five-sided shape) during the creation of this shape.
Changes in the evaluated core functionality reflected in the
equations can possibly modify how the respective positions
are calculated and new patterns are prescribed. Compared to
drawings made by one stroke, this additionally provides the
coordinates of larger (constituent) and all of its inner smaller
five-sided fractals (constructs). Even L-systems based on
recursively replaced substrings are shown to be more complex
because they directly rely on context-sensitive grammar
instead of the context-free variant used in our five-sided
implementation. Their limitation lies in the interpretation of
particular symbols and the need to draw them sequentially
without differentiation of layers created as a consequence
when the program dives deeper in recursion during drawing.
Consequently, extendability in the presented planimetry

27336

solution is increased by more possibilities for applying
particular patterns in the context of recurrently expanding
the five-sided shape performed as direct management of
constituents created from respective constructs inside a
recursive function (usually one). Accordingly, other fractals
are created in a similar manner.

The stub code abstracted from some calculations is based
on the following equations that appear in Listing 11.

B. INITIALIZING EVOLUTION OF PRODUCT LINE BASED
ON FIVE-SIDED FRACTAL SCRIPT

The framework must be configured to introduce a new func-
tionality into recursively executed locations. Each change
applied inside the recursion has a high probability of being
symmetrically applied quantitatively in an observable manner
to form a feature and possibly to preserve its fractal nature.
The configuration of the evolution depth and changes in
its parameters have various effects during reuse inside
recursively executed functionality. Such changes must be
observed in the resulting data or code provided in the
final phases of each evolution iteration. We can assume
that we are creating one feature in each evolution iteration
and only from the structural information on the input,
owing to recursion. This assumption helps configure the
strategies used to inject new functionality within the iteration.
For this purpose, each evolution iteration is configured
independently and connected to the previous iteration in the
sequence.

Various switches from canvas contexts must be applied
to increase the drawing possibilities and reduce the number
of parameters of certain methods. Therefore, our software
product line requires no state-preserving variables or mod-
ules. For this purpose, we must only allow and use the
canto-js [42] library. This library provides wrappers under all
HTML canvas methods to save previously used coordinates,
thereby allowing turtle graphics and method-chaining. This
simplifies future adaptations and narrows the possibility of
extending previous fractal versions by omitting the use of
parameters of integrated modules and similarity measures to
find correct variables with the responsibility of propagating
coordinates through the module for further drawing. The
library is required to insert specific script files, is initialized
as a wrapper to the previous 2D context of the HTML canvas
object, and provide exported functions that will be integrated.
Reducing the number of methods, their arguments, and
the possibilities to insert them helped optimize operations
(especially those with exponential complexity) inside the
framework and flexibly evolve the solution. Consequently,
exports of the input scripts should be excluded and batched
according to the focus on the momentary construction of the
positive variability increment.

Another important setting is to plan which code fragments
can be injected and in what numbers. The provided setting
is responsible for managing the injection of a particular
functionality in the evolution iteration only once or again

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

(O I S OSIN)

10
11
12
13
14
15
16
17

19

20
21
22
23
24

25

26
27

28

29
30

31

32
33

34

35

@DecoratorTypesService.wholeClass ({"
fiveSide": "true"})
export class FiveSideFractal {

getFiveSideShapes (
iteration: number, sidelLength:
number, xl: number, yl: number,
x2: number,
y2: number, x3: number, y3: number,
x4: number, y4: number, x5:
number,
y5: number,
context:
CanvasRenderingContext2D) :
{
/% VARIABLE INITIALIZATION xx/
/%% EVALUATING LENGTHS AND PERFORMING
NECESSARY SIZES xx/

fiveSide: FiveSide,

void

if (iteration > 0){
/*% GETTING REMAINING 5 INNER POINTS

// MAKE FINAL LINES
if (iteration == 1) {
/* DRAWING 5 OUTER LINES x/

/+* DRAWING 5 TRIANGLES FROM EACH LINE
— CONNECTING FOUND INNER POINTS
WITH 2 POINTS ON PERPENDICULAR LINE

(TAKEN FROM THE REMAINING PART IN THE
MIDDLE AFTER TAKING TWO SIDES OF
SMALLER FIVE SIDE FROM IT) */

/%% CONNECTING INNER 5 POINTS TO FORM
FIVE SIDE In THE MIDDLE =/

// EXTEND RECURSION TO 6 FIVE SIDES
} else {

// LEFT UP
this.getFiveSideShapes (iteration -
1, smallerSidelLength, rightl2x,
rightl2y,
x2, y2, left23x, left23y, new23x,
new23y, newl2x, newll2y, fiveSide,
context);
// LETF DOWN
this.getFiveSideShapes (iteration -
1, smallerSidelLength, right23x,
right23y,
x3, y3, left34x, left34y, new34x,
new34y, new23x, new23y, fiveSide,
context) ;
// RIGHT DOWN
this.getFiveSideShapes (iteration -
1, smallerSideLength, right34x,
right34y,
x4, v4, left4dbx, left4b5y, newdb5x,
new4b5y, new34x, new34y, fiveSide,
context) ;
// RIGHT UP

this.getFiveSideShapes (iteration -

1, smallerSideLength, right45x,
right45y,
x5, y5, leftblx, leftbly, newblx,
newbly, newd45x, new45y, fiveSide,
context) ;
// UP

LISTING 11. Stub code from the script to draw a five-sided fractal.

VOLUME 13, 2025

36

37

38
39
40

41

42
43
44
45
46

47

48

49
50

51

52

53

54

55
56
57

58

59

60

this.getFiveSideShapes (iteration -
1, smallerSideLength, right51lx,
right5ly,
x1l, yl, leftl2x, leftlly,
newl2y, newb51lx, new5ly,
context) ;

newl2x,
fiveSide,

// MIDDLE
this.getFiveSideShapes (iteration -
1, smallerSidelLength, newl2x,
newl2y,
new23x, new23y, new34x, new34dy,
new45x, new4by, newblx, newbly,
fiveSide, context);
}
}
}
drawFiveStar (conttext:
CanvasRenderingContext2D, radius:
number, iterations: number,

thickness: number) ({
const fiveSideMapInfo = new
FiveSideMapInfo (conttext, 5,
300, 400);
const fiveSide = new FiveSide (
fiveSideMapInfo, iterations,
thickness);

300,

this.drawShapeAndStoreVertices (
conttext, fiveSideMapInfo,
fiveSideMapInfo.ruleString,
fiveSideMapInfo.angleForPoint,
fiveSideMapInfo.sidelLength,
radius, fiveSide); //draws

outher five side
this.getFiveSideShapes (fiveSide.
iterations, fiveSide.
sideLengthInitial, fiveSide.
vertices[0].x, fiveSide.vertices
[(0].y,
fiveSide.vertices[1l].x,
fiveSide.vertices[1l].vy,
fiveSide.vertices|[2].x,
fiveSide.vertices[2].vy,
fiveSide.vertices[3].x,
fiveSide.vertices[3].vy,
fiveSide.vertices[4] .x,
fiveSide.vertices[4].vy,
fiveSide, conttext) //
recursively draws five side
}
}

function drawAnkletModMain (conttextMain:

CanvasRenderingContext2D, radius:
number, iterations: number, thickness:
number) : void {

let fiveSideFractal = new

FiveSideFractal();

fiveSideFractal.drawFiveStar (
conttextMain, radius, iterations,
thickness);

}

LISTING 11. (Continued.) Stub code from the script to draw a five-sided
fractal.

27337

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

after a predefined number of iterations. The application
of the setting (configuring a particular evolution iteration)
to choose and inject some functionality only once results
in a lack of such functionality in the derived software
product lines, where another functionality was selected.
In addition, the preconfiguration of some variables that can
be directly substituted, such as the line length or diameter
of the radius, is beneficial. We provide these in the form of
global declarations in a separate file and link the file system
path inside the configuration. Despite this configuration,
substitution of the found parameters is performed in place
of a particular variation point based on the available type.
For semantic reasons, the parameter name should be included
in the substitution candidate variable to narrow the range of
possibilities.

C. RECURSIVELY DRIVEN FIVE-SIDED
FRACTAL-SOFTWARE PRODUCT LINE EVOLUTION

We ran an automated aspect-oriented knowledge-driven
evolution process on a five-sided fractal script without
configuring internal variability. A high-level view of the
entire process is shown in Fig. 7. In its application to the
evolution of fractals, shown in Fig. 8, especially five-sided
fractals, the focus is on creating multiple representations as
a basis for knowledge aggregation and further processing.
The first two steps involve variability handling and product
derivation.

Consequently, the code and its structure are perceived as
characteristics of the software product line family. Accord-
ingly, the script is converted into an abstract syntax tree
to manage all associated functionalities. In parallel, scripts
with supporting code fragments are parsed, followed by the
extraction of exported code fragments in a similar fashion.
The next step is to handle negative and positive variability.
Firstly, the existing entities in place of the variation points are
chosen and annotated as variable. Accordingly, managing the
negative variability is a fully automated step. Secondly, the
exported functionality must be placed inside the particular
variation points between existing entities from the previous
step. The observed context must be adhered to to prevent
defects by substituting unavailable parameters or calling
functionality into a forbidden place. The injection of the new
functionality is performed directly on the abstract syntax tree
of the processed script. Additionally, variability markers and
annotations are removed from the tree.

The project that evolved in the current iteration is copied
for each intended extension. Each updated abstract syntax
tree is converted back to code and its old version is replaced
from the previous iteration in the copied project. The
evolution cycle is closed by continuing the next iteration in
an already project from this evolution iteration phase. The
product of the evolved five-sided fractal software product line
can also be derived. Optionally, multiple representations are
extracted and organized in a dataset or ontology, as described
in detail in Section IV-D.

27338

When the derivation is completed, it is feasible to
manually evolve some of the derived solutions from tailored
functionality.

Mixing various fractals will not easily bring aesthetic
value that usually originates from recursion and repetitions
and prevents even roughly associating this value. This
complication especially holds when code constructs are
incorporated as impenetrable exported modules with their
own interfaces, based on the parameters provided to them.
In contrast to traditional tasks for synthesizing various code
fragments, similarity or quality metrics (the complexity
metrics are measured using the TyphonJS-ESComplex ser-
vice [43]) do not help in this process because they are not
associated with recursion. Consequently, observing recursion
patterns according to the relationship between elements of
a different order (constructs/constituents) and more adapted
self-similarity [44] in parallel with additional metrics are
necessary to drive incremental changes in each phase. These
rules are fulfilled by preserving continuous lines or fitting
shapes on the path of the base fractal. Accordingly, the
drawing of the new shape starts at the point on the canvas
where the drawing of the previous shape stops. For this
purpose, we extend the functionality only inside recursive
functions.

To achieve this, we incorporated a recursion-detection
mechanism. The original annotated abstract syntax tree
containing inserted positive variability markers and the
position of the class and method declarations is provided
as the input. The declared function and class names are
stored in the hash map, pointing to a set of names from
all called functionalities inside them. Similarly, the start and
end positions of the declared functionality from the abstract
syntax tree are harvested to detect if a given marker or
variation point is inside, and then executed inside recursion.
The detection process iterates over all stored keys and, for
each of them, attempts to check whether some inner calls
point to its name. If this holds, the cycle is found and
verifies the recursively evaluated code fragment; otherwise,
no recursion is detected. The last step is to include this
information for both types of variation, namely positive and
negative points, and to persist on their list. The start and
end positions of these annotations and markers are selected
because of the unavailability of their names in the map of the
detection mechanism. Finally, checking whether the variation
point is inside recursion is performed by finding any function,
class function, or class name that was previously evaluated as
recursive. The analyzed point is located inside them. In the
evolution process of fractals, this information is valuable for
selecting such points, repeating patterns, and whole fractals
at different levels.

More complex information about the number of repeatedly
called functions among each other can be evaluated, and the
direct process of applied repetitive patterns can be split into
this recursively evaluated sequence. The evolution process of
the five-edge fractals in the first evolution phase is shown

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

Parsing AST of selected/
evolved script

Getting exported
functionality from selected
scripts

Cloning Source SPL -
each script

Loading evolution
configuration

Supporting proposed
models

.
L.

thology or dataset
update

Evaluating and picking

By

the best candidates

Ges)
2=k

Applying variability selection
strategies to select variable
components and prepare injection of
new functionality

Synthesis of final AST |
from final SPL script

Update/insertion of
selected/evolved
script

Optionally deriving
products

B

FIGURE 7. High-level view on software product line evolution process.

® -

END

No fyrther

Creating and annotating
the fractal script

Annotating L
the results

ting
screenshots

==

AST trees,
diagrams,...

Creating another
representations

*

Extracting relational
data/BIG data

Choosing the best
instances

Enhancing third-party
models/evolving SPL

Associating all related
information from the given
variation point for each
node/connection

l § Merging graphs
No*ers* according to the
same instances

Should graphs

be aggragated?

|

Aggregating collected
representations into dataset

FIGURE 8. The process of getting various representations from the fractal script and using it

for the software product line evolution.

in Fig. 9. The first fractal displayed is the base. Each of
the remaining ones emerged after inserting a call into a
recursively evaluated function responsible for creating a filled
circle with a different radius in the center under a previously
used position.

Domain knowledge was thus shown to be important
in directing the evolution phase and the overall evolution
process towards fulfilling requirements. In the comparison-
driven evolution process, according to the similarities
between the base and integrated code fragments, the rules

VOLUME 13, 2025

derived from the requirements are not too strict to precisely
formulate suitable similarity values. However, deriving new
annotated software product lines that lost some of their
variable functionality can theoretically lead to correct adjust-
ments made with the help of knowledge gained from previous
phases. Positive variability without a proper domain-driven
mechanism is difficult to orchestrate. Verification of the
entire software product line is handled directly inside the
browser by loading pages and resources. The product is
functional if no exception is thrown and the script is

27339

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

FIGURE 9. Deriving various fractals in recursion-oriented software
product line evolution phase.

executed entirely. Testing products for aesthetic value or
taking various measures requires extracting appropriate data
such as screenshots and using them in advanced decision
models. These products are derived during the derivation
process and are accompanied by an associated version of the
evolved software product line.

D. IN-PRODUCT VIEWS: DIVERSE DATA AND SOFTWARE
KNOWLEDGE REPRESENTATIONS

When the core of our automated variability handling
mechanism has processed the five-sided fractal, it emanates
samples of a similar five-sided fractal with a preconfiguration
of its inner variability extended with a new feature. The
changes in the variability configuration allowed us to derive
slightly different products. The emerging instance of the
five-sided fractal software product line and its possibly
derived products must be analyzed and abstracted from
particular information in multiple ways, each being treated
as a product-representative view. Each view expresses
different in-product characteristics, particularly in the case
of each diverse data representation. For example, a vector
representation can capture every drawn object in its respective
order. In contrast, a raster representation is characterized by
a frame filled with pixels from objects already drawn on the
canvas. A semi-structured representation captures documents
created from instantiated objects or is more impoverished
than other representations by preserving only some relations
obtained from the program execution. Complementary to the
aforementioned representations is graph construction, which
is capable of capturing created entities, such as classes or
functions, during program execution and incorporating them
into a graph. This is the most significant representation
capable in its visualization to provide a view of the entire
software family if such product graphs are merged according
to similar nodes from the root node, and information
from such incremental aggregations of each merged node
is properly represented directly inside the found similar
node. Such information can consist of a counter or a list
of deviations from the similarity between the compared
nodes. Additionally, integrating all of these representations
under a flexible scheme in semantic ontology improves
further manipulations with such diverse data, especially
satisfying a variety of queries. As part of the evolution
of the fractal software product line, time-series data that
capture incremental and iterative additions are associated

27340

with a particular state of an evolved (five-sided) fractal.
Diverse representations can be generalized to capture similar
information from any other executable code, not only from a
fractal. In this case, the five-sided fractal is captured as:

Vector
A sequence consisting of the described objects that
will be drawn. Elements containing information on the
geometric shapes occurring in fractals and optionally
including animation elements sufficiently cover every-
thing from the rendered outcome of the final product.
Accordingly, it is a descriptive representation of the final
product containing a description of the value-bringing
elements/behavior of such a product abstracted from the
code.

Raster
Drawn fractal itself as a raster image. This key
representation captures the value of the entire product
for end users, which is an aesthetic value in case of
drawing fractals. This representation can be generalized
to screenshots displaying key features, especially user
interfaces.

Semi-structured
The logs used to capture the relationship between
parameters and their values are harvested from repetitive
diving into recursion during fractal creation. This
representation is easily obtainable from any executable
if custom logging is incorporated.

Graph
Sequence of created or called functionality while
executing a five-sided fractal script. Similarly, as in
the previous case, it is feasible to construct for any
executable software product line script.

Relational
Additionally evaluated quality/complexity metrics, user
assessment, or associated labels. Generalizable for any
executable.

Code
Executable five-sided script itself (or any script).

Ontology/Triples
Integration of all representations of a five-sided script
together (or any script).

Time-Series
The sequence of historical and future changes is in
accordance with the evolution of a particular software
product line.

The whole fractal is effectively captured in the respective
views presented as puzzles that are combined into a whole
using ontology, as shown in Fig. 10. Consequently, with
their help, some simulations can help detect various problems
and direct software product line evolution towards multiple
goals. To the best of our knowledge, the available studies
have ignored these aspects related to software quality and/or
feature management solutions incorporated into the provided
views and prepared to be integrated as ontology about
a particular fractal product (five-sided in this case). Our

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

approach enables simulations based on automated software
product line evolution and its further adapted extensions.

“J FIVE-SIDE FRACTAL

VECTORS: A SEQUENCE OF DESCRIBED DRAWN IMAGE OF FRACTAL |

OBJECT THAT WILL BE DRAWN

D2 -
& ONTOLOGY/TRIPLES SPL Evolution

FIGURE 10. Relations among diverse representations for presented
five-sided fractal in software product line evolution.

Knowledge modeling helps organize and derive new exist-
ing knowledge according to a suitable schema. In contrast,
ontology creation must be adapted to the available methods
for specific problems to achieve the highest accuracy [45].
Automated knowledge modeling methods are preferred, but
require more data. Consequently, the derivation and evolution
of products from the fractal software product family should
satisfy this requirement. Domain knowledge accumulated
and contained within the evolved five-sided fractal software
product line lying in its preconfigured variable features must
be extracted and used further to derive new knowledge and
for automatic and autonomous reasoning.

Helper functionality elicits raw data to craft these repre-
sentations, which are optionally embedded in a particular
software product line and propagated into individual derived
products. Its essential capabilities include simulating the
stack, dynamically capturing the created objects after execu-
tion, and storing them in graphs. They require special code
to be optionally injected before and after the body of the
called method or executable code block. After executing a
particular code, a hierarchical representation is created in
the background and exactly from the executed code, thereby
allowing the capture of a predefined flow. No aspect-oriented
weaving is necessary because of the optional insertion of
such functionality strictly for data-extraction purposes in
preconfigured cases. This process is illustrated in Fig. 11.
The other functionality for logging conditionally related
parameters to capture variable names and their values at a
certain recursion depth for calling a particular component
is managed similarly. The principle of how the logged
variables from the input are represented is illustrated in
Fig. 12. Similarly, to capture vector graphics as commands or
representative entities, the helper code converts shapes into a
vector representation instead of directly drawing them during
execution.

Some tools do not need to be integrated into a particular
sample of our five-sided software product lines. Third-
party programs, including screenshoters, classifiers, data
pre-processing, or analytic models, transform extracted raw
data into final representations or directly open and execute
scripts in the web browser. Additionally, screenshots are
taken from the graphics elements generated by a specific

VOLUME 13, 2025

@wholeEntity(
Stack [is {"functionalityl": true})
optionally function a(i) {

included during

SPL) program, i 1=0) {a(i1); } b0);

Gesn)
kol
/'

} Raster’screenshots or
vector drawings are
optionally associated

with nodes

@wholeEntity({”AND": {
"functionality2": true, |
"functionality2": true}

)]

| function b() {

}

E

0
i)
~+
o
)
s
2

E&E
A8

:

@wholeClass({})
class B {
a: str;

constructor(b) {
<();

[}

< {
a(1); Graph from instances [is

1 new B() created as nested structure
} during program/script

initialization/execution

function c() {
1 Processed annotated script

FIGURE 11. Injecting stack data into derived software product line script
or final product and dynamically created hierarchic structure of pushed
instances.

Processed annotated script

@wholeEntity({"functionalityl": true})
function a(l, j, k) {

ilfl(i 1=0) {a(i-1,j, k); } b();

[

Semi-structured logs

log(i, j, k)

{“k__i=1_j=10": k} {“k__i=1": k}

{i_i=1_k=5":]} =17 j}

{“i__k=5_j=10": i}

FIGURE 12. Injecting logging functionality to log the combination of pairs
where each consists of a variable name with its values.

component or code fragment. Semantic networks should
ensure tracing between these screenshots and the elements
that generated them. Screenshots are applicable because
of the capability of the resulting five-sided fractals to be
rendered and displayed immediately in the web browser.
In the case of analytical tools, user preferences can be
accurately predicted using GNNs [46], [47] (Graph Neural
Networks) or logistic regression [48].

V. FLOW AND ALGORITHMS IN FRAMEWORK FOR FULLY
AUTOMATED SOFTWARE PRODUCT LINE EVOLUTION

The core of our fully automated evolution process includes
parsing and divisioning the script into variation points,
extracting context information, using it to manage variability,

27341

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

and producing newly evolved software product lines. These
are optionally selected for the next iteration. The high-level
flowchart diagram is shown in Fig. 13. Its initial phase
involves processing the selected base script and other scripts
with exported functionality to provide possible sources for
extending this base script. The process can be divided into
three phases. Firstly, the context is extracted from each or
selected variation point in the application, and the changed
copy of a abstract syntax tree (AST) with system annotations
of negative and positive variability is produced. This phase is
displayed as a subprocess called the Divisioner process in the
flowchart diagram in Fig.13, also completely in Fig. 14, and
in more detail using the activity diagram in Fig. 15. Secondly,
the configuration expressions in place of the variation points
are extracted, collected, and persisted in the variation point
sequence. The process flow is shown as a subprocess called
the Extraction process in Fig.13 and completely in Fig. 16.
Finally, the evolution algorithm is applied to determine and
handle the positive and negative variability in the evolution
process. The remaining two subprocesses from the high-level
flowchart diagram (Fig. 13), followed by their synthesis
into a new version of the evolved software product line,
close the evolution loop. Fig. 17 shows this phase in
detail.

<<component>>
SPL Evolution

Conversl::: emto AST :|

Yes Extraction Divisioner
process process

Harvest new/positive
variability variation points

Should
variants/scripts be
evolved
again?

Harvest already available/
negative variability
variation points

Make derivations according
to positive variability &g
context

Make derivations according to

negative variability
configuration

FIGURE 13. Overall flow of the core of fully automated software product
line evolution process.

A. INITIAL PHASE: EXTRACTING CONTEXTS

Firstly, the base and suitable code fragments are chosen
as extensions of existing applications/scripts. The base
application is selected either manually or automatically.
The initial phase is shown for each of the scripts on the
input in Fig. 14, and the entire flow concerning details
about the division of the abstract syntax tree into variation
points and annotating/marking them is shown in Fig. 15.
Secondly, the applications are loaded and parsed, which
includes the observing local and global context inside and
between the in-code constructs of a particular programming

27342

language. A hierarchical data structure presented in the
previous example (Fig. 2) is created for each entity, with
nodes consisting of classes and methods. This data structure
allows for flexible orientation and semantic associations of
smaller fragments with nodes inside the hierarchy during
the processing of an abstract syntax tree. Another benefit is
the ability to harvest all entities before the processed entity
in sequence or search for a given context. In our proposed
software product line evolution process, these abilities are
used to mark and harvest the application context of given
variation points that belong to both positive and negative
variability. Each harvested context is unified according to the
chosen schema into a JSON document and concatenated into
the sequence.

The mechanism presented earlier is in the case of
software product line evolution applied repetitively to each
application/script. Export statements from used extensions
must be gathered from other applications/scripts. For this
purpose, the previous process is used, but it can be simplified
and optimized optionally, as shown in Fig. 14. In addition,
mapping of each export to its context is discovered. Exports
are then aggregated for each file and under the related
context. Similarly, aggregation under a given type helps to
effectively determine suitable function parameters during the
instantiation of callable constructs.

B. THE ROLE OF COMMONALITIES AND VARIABILITY
MANAGEMENT IN SOFTWARE PRODUCT LINE EVOLUTION
Commonality and variability are mutually exclusive if the
original product line is not extended to new functionality. Too
much variability usually results in fewer quality products and
too much commonality in not many products. However, cre-
ating many evolved software product lines with their diverse
representations is necessary because of the knowledge-driven
nature of our evolution approach and decision-making
dependence on big data. The decision of what should be
common and variable is important for economic reasons to
achieve as much reusability and satisfy as many customers
as possible [49]. Swapping from common parts to variable
parts is necessary for extendability and automation through
dynamic updates. These commonality/variability updates
are achieved by setting or removing user annotations for
variability management from a processed application or its
corresponding abstract syntax tree.

C. CONFIGURING AND SWAPPING COMMONALITIES

AND VARIABILITY: NEGATIVE VARIABILITY HANDLING

Negative variability handling requires the extraction of
all available user annotations with given configuration
expressions. Additionally, system annotations can be created
for these points. If these annotations are unavailable, system
annotations can be created to mark possible variation
points that are perceived as common. All such changes are
propagated to the final copy of the abstract syntax tree in
the cases allowed by the configuration. User annotations

VOLUME 13, 2025

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

Extracting context from the domain and applying it to synthesis of configuration artifacts

Base application/script

Application/script to be merged 1

Application/script Application/script
to be merged 2 to be merged N

Parsing application code
into the hierarchic code-
based structure

Mark each positive
variation point on
AST using variables

Annotate negative
variation points on
AST using decorators

Extract annotated (also from
user) variation points from AST

Parsing application code into the
hierarchic code-based structure

Mapping each export to related
hierarchic code structure entity

END configuration strategy

Loading
application code

Apply Apply
division division
configuration configuration
strategy strategy

Apply division

L

Extracting context from domain segments

Serializing configuration
into merged (positive,
negative, and user-related
data) sequence according
to evolution context
information

Generate unified
configuration
according to each
variation point
context and
available user data

2
=3
g
3
°
2
2
=
5
9
e
5
20
=
c
5
Q

Aggregate exports
according to context

Aggregate exports
according to file name

Aggregate exports
according to entity
information type

END

FIGURE 14. Initial phase of our automated evolution: Extracting context from applications and synthesizing configuration

resources.

are always propagated in its copy. In the case of positive
variability, the process is different. The variation point is
marked with a declared variable initialized with context
information, all possible calls, accessible global and local
variables, and information if the context is inside a class.
In abstract syntax tree, these places can be found inside an
array of statements or members. Incorporation of changes
requires taking this into account with proper indexing.
Elements are inserted in the beginning, middle, and the
end. Operations are visualized in Fig. 15. All information is
extracted and persisted in the next phase, which is separated
to allow its flexible adaptations.

Various strategies have been employed to direct evolu-
tion to produce extendable, maintainable, and economical
solutions that can be instantiated and evaluated directly.
The process of selecting and deselecting features as an
extension of the negative variability handling is shown in
Fig. 18. Some of these strategies focus on preserving the
same number of common and variable features, decreasing
or increasing common or variable features, and using metrics
and user-annotated data to direct it towards the expected
balance.

VOLUME 13, 2025

D. THE SEQUENCE OF PRECONFIGURED STRATEGIES
TOWARDS CUSTOMIZED QUALITY-DRIVEN CODE
SYNTHESIS: POSITIVE VARIABILITY HANDLING

Various code constructs can be synthesized to flexibly support
various requirements that can be fulfilled during our evolution
process. Thus, positive variability handling must be bound by
the capabilities of programming languages. Many languages
are based on hierarchical structures in which one entity is
declared as part of another. In the case of classes, there is
no dependence on the sequence of class method declarations
when they call each other. Therefore, other restrictions should
be met. For example, wrapped methods cannot be accessed
directly at higher levels using JavaScript. All of these
restrictions are necessary to incorporate positive variability
handling strategies to derive compilable products. Flow of
various strategies to manage the selection of features in place
of variation points, creation of related constructs, and various
score assignments are presented in Fig. 19.

Positive variability markers are created during the initial
phase and inserted into the copy of abstract syntax tree.
In addition, each possible code construct given by actual
context, especially by position inside analyzed content,

27343

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

v

Initialize global Initialize new local

context

Clone AST tree

context (empty for JS)

Cloned AST Global Local
tree context context Yes™ >

Process next layer of Ast (with Are all AST

Initialize this new local
context of given type

Identify end position of

New typed
this context from AST s

local context

Append context as

Identify context .
child of outer context

Is available
any context
information?

Is new context
available?

Process each child Harvest context

processing
AST child object
Initialize marker with context array?
information

Yes

Marking and

object of actual AST <«—No—Yes—,
element
A

information

Divisioner
process

processing gatiy
AST child object variability
annotations

Extract all associated
Q% negative variability
annotations

hould system
annotations be used to
change/set variation

Is automatic
annotation

= ¢apturing positive - f<—] Assign parameters to ‘ -~
iabili in chi i i s variable
e variability Put ea:::leir:;n't‘emwc:"l:: object actual inner context — e
according to array type y Yy Yes
Updated Assign Assign variable
Is identified — local variable to to global
Identify array type ENNLER context type child cont;{d type context local context context
or class? oorect
Updated
global <
l— context
ATl Negative Aggregate user User negative

arking
negatiye variability

Are
any user
variability annotations
assigned to child
object?

negative variability
annotations

variability
annotations

Aggregate system
negative variability
annotations

System negative
variability
annotations

Yes

v
Propagate all negative

point places? at all places forced

by user?

Propagate/create all
negative variability system pul
annotations to copy

< variability user

annotations to copy

FIGURE 15. The process of getting application context from each variation point and marking/annotating these points on the copy of the abstract syntax

tree.

is transformed into a template and assigned to the correspond-
ing marker inserted behind the place of analyzed context at
this phase.

Firstly, the strategy for obtaining stored calls from the
variation points is selected and transformed into templates.
These templates are aggregated for each variation point.
This includes loading all such calls, obtaining those that
do not include more entities to be instantiated or calls
to be concatenated, and extracting them according to
their previously assigned priority or only according to the
necessary types. Restrictions in this step help to reduce
the number of possible candidates and, ultimately software
product line derivations. Secondly, the templates should
obtain the assigned quality/priority scores according to their
complexity, semantics, or coupling relatedness. However,
this sub-phase can be omitted if the constructs have already
assigned values. Thirdly, different metrics and scores must

27344

be combined, ideally in a model with weights for each
metric/score. Other possible strategies include choosing
related metrics for a given iteration to focus directly on
quality, semantics or structural aspects.

Additionally, the associated decorated parameters of func-
tions or constructors are accessed from the variation point
configuration and used to reduce the number of potential
available substitution candidates. Similarly, various strategies
can be used for this purpose. Match whole variables exactly,
omit matching completely, use preconfigured regular expres-
sions, preconfigured inheritance relations, or use similarity
metrics amongst available parameters and words extracted
from decorators. After this phase, the remaining available
candidates are substituted into templates for each variation
point, leading to the generation of callable constructs.
These constructs can be directly called what is used to
measure their complexity. One predefined strategy out of

VOLUME 13, 2025

—

. Perdek, V. Vrani¢: Fully Automated Software Product Line Evolution With Diverse Artifacts

IEEE Access

Process next layer of Ast (with
root or child object, and equal

copy from clone)

Process each

child object of

actual AST
element

4
= -

Persist/save negative
variation point
representation

Are all
AST parts
processed?

Is processed
object marker?

m lNo

Is marker class
variable?

Empty object Harvest newly available/positive variability variation point m

Extract data from class AST
famg Mmembers stored as initialization

Yes in form of JSON object
Convert data to
_| JSON object
No

lization in
form of JSON object

[
information

Persist/save positive

variation point

representation

Positive variation
point «—Yes—
Extraction process tepresentation

Is positive
variation point
harvested?

Negative
variation point
representation

A
Yes

Is negative
variation point
harvested?

D %

Is processed
Annotation
variability oneZ,

Extract data from decorator first
S 4 argument stored in form of JSON
object
Harvest already available/negative

variability variation point Variati a
m information

Convert data to
JSON object

FIGURE 16. Extraction of expressions from annotations/markers with associated information into a sequence of variation points data.

Generating/referencing
possible functionality Yes
according to its assigned § Lo
context for each variability
point of positive variability

New context-related
functionali
mapped according
to context related to
variation points

Selecting positive variation
points according to given
strategy

Instantiating all variants with

&
t

Should new °

functionality be
connected?

N
i

Instantiated
variants

chosen context-related

functionality according to
given strategy

Harvest new/positive
variability variation points

Evolution core functionality
(selections and updates)

variation points be
selected differently/

of candidates from previously

Removing system variability Updating AST according to
annotation constructs made selections

Measuring quality of actual
solution and its variation
points

Assigning score to actual
variation points according
measured quality/requirements

Should

reorganized?
Assigned scores ot
previously-
selected variation
points

Harvest already available/
neggtive variability variation points
Excluding the chosen number Selecting the chosen
number of new candidates
according to selected
strategy

selected nodes according to
selected strategy

New variation-
points
candidates

L
Y

variation

points
candidates

FIGURE 17. Evolution core mechanism: deciding about common and variable & incrementally incorporating new functionality.

the possible substitution strategies is used. All such calls
can be instantiated according to the optionally available
type, the candidate variable can be substituted into a given
template construct only once or a restricted number of times,
and the candidate variable can be substituted according to
the similarity metrics between the variable and substituting
parameter or based on the occurrence of parameter inside

VOLUME 13, 2025

the candidate variable. Similarly, for templates, the scores
of the given constructs are evaluated, assigned, and used
to calculate the overall score for each callable construct.
Native tools are used to measure the complexity constructs
in JavaScript. Similar strategies used for templates are
applied more precisely because of the substitution of exact
parameters, such as similarity metrics.

27345

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

. .
METRIC BASED CONSTANT_

I 1
CONSTANT_ CONSTANT_

START Which HANDLING UNSELECTION_ONLY SELECTION_ONLY FEATURES
features shoula -
be selected X v v v
as variable or TR Unselecting Selecting Selecting and
excluded to unselecting constant constant unselecting
commonality? REEIOTENERL] number of number of constant

on metrics features

features only features only

@

END >

FIGURE 18. Selections and deselections of features during handling of
negative variability.

E. SEQUENCE OF PRECONFIGURED STRATEGIES TO
SELECT FEATURES FROM CONSTRUCTS FOR MASSIVE
AUTOMATED SOFTWARE PRODUCT LINES PREPARATION
The critical step is to select which variation points and strictly
which constructs associated with each feature should be used
in the resulting prepared software product lines and then in
their derived products. An additional selection of constructs
amongst the features on the variation points is required to
adequately model the scattered features that crosscut two or
more variation points. Mentioned selections, in case of proper
configuration, ensure that the software product line can be
extended to include any functionality that is perceived as a
user-visible aspect or feature. The final part of the evolution
process core is shown in Fig. 20.

Firstly, the variation points provided by a set of templates
are selected. We perceive these selections as the selection
of features. The available strategies include selecting a
constant number of features, similarity-based selections
between previous functionality and functionality on a given
variation point, or topologically based selections oriented
according to where variation points are located, such as in
global space, inside methods, or classes. Secondly, certain
callable constructs in place of each variation point should
be selected. Associated strategies include the selection
of constant callable constructs for each selected variation
point, session-based selection to balance performance and
reduce the number of candidates given by configuration,
and topological selection based on the similarity of each
sub-selected aggregated construct. Used callable constructs
can be proposed in different order, and thus, the number of
resulting instances can increase.

Thirdly, a suitable data structure should be proposed
according to the selected constructs for each variation point.
Proposed structures, such as lines of code, including various
declarations, variable assignments or calls, and methods, can
usually be injected in place of a given variation point and
thus do not crosscut. In the case of classes, their declaration
should be moved to global space. Various strategies can be
used to handle these operations. A more common strategy
is based on granularity, which is determined by the number
of lines of code. One or two lines of code are separately
injected into a given variation point separately. A few lines
of code are moved into this method. More lines of code
or methods are converted into classes, particularly if many
variables are assigned, or methods are aggregated. Variables

27346

can be assigned inside the constructor, and setters and getters
can be added automatically. In the case of methods, one
method should be selected and converted into a constructor.
Alternatively, all calls should be moved to a newly created
constructor. The exact configurations for the size of specific
modular fragments must be discovered during the evolution
process. In contrast to this type of strategy, similarity-driven
algorithms can be employed. Lines of codes are aggregated
under the method only when the common context is identified
or when the probability reaches a given threshold. Similarly,
the same principles apply when aggregating the variable
declaration methods under the given classes. This option is
effective if many software product lines are generated in the
actual evolution iteration and can be driven by data from code
structures instantiated and harvested during the execution
of evolved functionality from these software product lines.
Aggregating variables inside the class also depends on their
number, and thus requires combining both strategy types.

The next step to finalizing features is to select previ-
ously created data structures that should be propagated to
finally produced software product lines, thus solving the
problem concerning introducing and incorporating scattered
features. Intended strategies include selecting all of these
structures, selecting all up to n structures, selecting constructs
according to similarities amongst different variation points,
or selecting exactly one. The last-mentioned strategy helps to
dramatically reduce the number of proposed evolved software
product lines in this iteration compared to the remaining ones.
The first and second generate up to a factorial of evolved
software product lines produced in this iteration according to
the number of generated structures in the previous step.

Each evolved software product line can be optionally
checked for duplicity according to configuration, followed
by its removal in the case of concordance. After this
phase, various functionalities are optionally inserted, such
as logging various events or simulating a stack with the
possibility of harvesting all instantiated instances during the
execution of the evolved software product line script. This
allows for the production of semi-structured and graph data.
Raster data can be obtained for specific code fragments owing
to the possibility of launching a product inside the browser.
These representations are extracted from evolved software
product lines, from which products can be derived optionally,
providing knowledge about the quality and structure of these
evolved software product lines produced in this iteration
based on the evolved software product family.

Finally, the software product line production mechanism
ensures that all required assets are copied into the folder
of the newly evolved software product line, inserts selected
structures into an abstract syntax tree, removes system
markers and annotations, preserve only user ones, inserts
imports from used structures, transforms them into final code,
and replaces the previous content of base application/script
with this new one. Abstract syntax tree and the new version
of the variation points sequence are persisted to properly
reference previous iterations. The final evolved software

VOLUME 13, 2025

IEEE Access

J. Perdek, V. Vranic: Fully Automated Software Product Line Evolution With Diverse Artifacts

START

. l TEMPLATE: new A([%[a: boolean %], b: number

EXTRACT_ALL_CALLS Extract all calls

TEMPLATE_

| - —

COMPLEXITY metrics on each template

EXTRACT_ALL METRICS

_EXCEPT_RECU RSION_, - Assigning semantic scores

RT _CALLS recursion-based ——SEMANTIC——> R eI R e Ll e R T
| START _METRICS template
PRIORITY_BASED _ 1, — e :
_EXTRACTION extraction SN AL R
—— _SCORES ———»| accor